Spelling suggestions: "subject:"methylmercury compounds"" "subject:"ethylmercury compounds""
1 |
Mechanisms of methylmercury-induced toxicity in primary embryonic CNS cells : the role of cell cycle regulatory genes and glutathione /Ou, Ying-Chung. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [148]-164).
|
2 |
Glutamate-cysteine ligase expression in the mouse /Diaz, Dolores. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 98-106).
|
3 |
Modulation of glutathione associated with methylmercury exposure in mice /Thompson, Sally A. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [116]-124).
|
4 |
Neurotoxicity of methylmercury : analysis of molecular mechanisms and behavioral alterations /Daré, Elisabetta, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 6 uppsatser.
|
5 |
Apoptotic cell death in neural stem cells exposed to toxic stimuli /Tamm, Christoffer, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 6 uppsatser.
|
6 |
Mercury exposure during early human development /Ask Björnberg, Karolin, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
|
7 |
Cell cycle inhibition as a mode of abnormal development : the role of cell cycle checkpoint proteins and cyclin-dependent kinase inhibitors in neurodevelopmental toxicant defense /Gribble, Elizabeth J. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 128-153).
|
8 |
Cytochrome oxidase histopathology in the central nervous system of developing rats displaying methylmercury-induced movement and postural disordersDyck, Richard Henry January 1988 (has links)
Sprague-Dawley rats were administered daily, subcutaneous injections of methylmercuric chloride at a dose of 5 mg/Hg/kg beginning on postnatal day 5. By their fourth postnatal week, animals exhibited a constellation of neurological signs of motor impairment which resembled the cerebral palsy syndrome of humans perinatally exposed to methylmercury. Routine histological examination of the brain revealed no gross differences between methylmercury-treated (MeHg), normal control (NC) or weight-matched littermates.
The histochemical localization of the mitochondrial enzyme cytochrome oxidase (CO) was utilized in Experiment I to examine possible alterations in the metabolic activity of motor nuclei which might contribute to the observed movement and postural disorders. A population of intensely-staining cytochrome oxidase neurons (ICONs) in the magnocellular portion of the red nucleus (RMC) and interrubral mesencephalon (IRM) were conspicuously present in all MeHg animals at the onset of motor impairment. These morphologically, histochemically, and anatomically distinct neurons did not exhibit intense CO staining in control animals. Conversely, a significant decrease was demonstrated in the oxidative metabolic activity of many neurons in the substantia nigra, zona reticulata of MeHg animals.
In Experiment II, the postnatal appearance of ICONs was morphometrically quantified in MeHg animals sacrificed at PND 14, 16, 18, 20, 22, or 25. The histochemically-defined onset of increased metabolic activity in ICONs was first observed on PND 16, at least one week before the onset of clinical signs of neurological impairment. This was the earliest manifestation of methylmercury neurotoxicity yet described in this animal model. A subsequent four-fold increase in the total number of ICONs at PND 18 was followed by a gradual decrease in number to PND 25. Significantly more of the ICONs were found in the IRM than in the RMC at PND 18 & 20.
The possibility that the increased activity of ICONs may result from disinhibition of specific afferents to the red nucleus was addressed by introducing either hemidecortication or hemicerebellectomy on PND 10 and then morphometrically determining the deviation from symmetry in the bilateral distribution of the total number of ICONs in the RMC and IRM at PND 22. The distribution of ICONs was symmetrical and not different in either hemidecorticate or unoperated controls. A significant (36%) decrease in the total number of ICONs was observed in both the RMC and IRM contralateral to hemicerebellectomy. The identical ipsilateral regions did not differ from control or hemidecorticate MeHg animals.
In Experiment III, the anatomical distribution of major histocompatability complex antigens (MHC) in the brain of MeHg animals was examined using immunohistochemical methods. MHC immunoreactivity was widely distributed throughout the brain of MeHg animals. Areas with low immunoreactivity, or lack of it, stand out and include all of the hippocampus, thalamus, pyriform and entorhinal cortex, and lateral cerebellar hemispheres. Moderate staining intensity was observed in neocortical areas, basal forebrain, caudate-putamen and cerebellar vermis. Strong immunoreactivity was found in red nucleus, substantia nigra, cingulate cortex, retrosplenial cortex, presubiculum, parasubiculum and vestibular nuclei.
It was suggested that the increased activity of ICONs likely contributes to the movement and postural disorders resulting from methylmercury intoxication. The increased activity in ICONs was determined to be, at least partially, dependent upon cerebellar input. The results are discussed with reference to the toxic effects of methylmercury and specifically to the susceptibility of GABAergic interneurons in perinatal trauma. Possible analogies are drawn between the mechanisms of methylmercury-induced cerebral palsy syndrome and those of other developmental movement and postural disorders. / Medicine, Faculty of / Graduate
|
9 |
Análise de células bipolares PKCa-IR e células ganglionares da retina do peixe tropical Hoplias malabaricus intoxicado com baixas doses agudas de metilmercúrioLiber, André Maurício Passos 03 August 2011 (has links)
O presente trabalho tem por objetivo analisar o efeito do metilmercúrio na retina de peixe tropical Hoplias malabaricus (Traíra) através de baixas doses agudas. As intoxicações foram realizadas, por meio de injeção intraperitoneal, nas doses de 0,01, 0,05, 0,1 e 1,0 g/g, com um período de quinze dias de depuração do MeHg. Após o término do período de depuração, os olhos foram enucleados e as retinas isoladas foram fixadas em PFA 4% por 3 horas. As retinas foram conservadas, até o momento do uso (ou por no mínimo 9 horas), em tampão PB 0,1M a 4ºC. Após os procedimentos imunohistoquímicos para marcação de células bipolares do tipo ON com estratificação na sublâmina b da CPI, as retinas foram aplanadas para confecção de montagens planas para a análise quantitativa de células bipolares ON imunorreativas a proteína cinase C _. A análise quantitativa das células da camada de células ganglionares (CCG) também foi realizada. Células da CCG foram coradas pela técnica de Nissl, as retinas foram aplanadas em lâminas gelatinizadas e submetidas a uma bateria de desidratação (com diferentes concentrações alcoólicas) e coloração, utilizando cresil violeta como corante. Estas análises foram realizadas em 3 ou 4 retinas para cada dose testada. Análises idênticas foram realizadas nas retinas controle. Todas as retinas foram dividas nos quadrantes dorsal, ventral, nasal, temporal e em centro e periferia. Campos foram fotografados por toda a retina com intervalos de 1 mm, com auxilio do programa Axio Vision por meio de uma câmera digital e um microscópio acoplados a um computador. Os campos amostrados foram contados com o auxilio do programa NIH Scion Imagem 2.0. A densidade média de células foi estimada para cada retina e os grupos intoxicados foram comparados com o grupo controle (Teste T-student). A partir dos dados de densidade celular, mapas de isodensidade foram confeccionados, além de permitir estimar o poder de resolução teórico da acuidade visual de cada um dos animais experimentais utilizados para análise de células da CCG a partir da densidade máxima de células. Evidenciamos que as baixas doses agudas testadas não causam diminuição na densidade célular de células bipolares ON e células da CCG, comparado ao grupo controle. Não houve reduções significativas na densidade de células para ambos os tipos celulares analizados em nenhuma das regiões retinianas nas doses de MeHg testadas. Assim, a intoxicação de MeHg por baixas doses agudas não alterou o poder de resolução teorio da acuiade visual dos animais testados / This study aims to examine the effects of low acute doses of methylmercury (MeHg) on the retina of the tropical fish Hoplias malabaricus (Thraira). Four levels of MeHg intoxication were induced by intraperitoneal injection of doses of either 0.01, 0.05, 0.1 or 1.0 g MeHg/g of body weight, followed by a fifteen day period of depuration of MeHg. After the depuration period, the eyes were harvested, and the retinas were isolated and fixed in 4% paraformaldehyde for 3 hours. The retinas were then stored (for at least for 9 hours) in 0.1 M sodium phosphate PB buffer at 4°C until the time of analysis. ON bipolar cells in sublamina b of the inner plexiform layer immunoreactive to protein Kinase C_ were immunohistochemically labeled, and the retinas were flattened to make whole mounts for quantitative analysis of ON bipolar cell densities. Quantitative analysis of cells in the retinal ganglion cell layer (GCL) was also performed. GCL cells were Nissl stained, and the retinas were flattened on gelatinized slides and subjected to another battery of dehydration (with different alcohol concentrations) and staining using cresyl violet. These analyses were carried out in 3 or 4 retinas for each dose tested. Identical analyses were performed on the control retinas. All retinas were divided into regions: dorsal, ventral, nasal, temporal, center and periphery. Sample retinal fields were photographed throughout the retina at intervals of 1 mm, with a digital camera attached to a microscope using Axio Vision software coupled to a computer. ON bipolar and GCL cells within the fields were counted with the help of the NIH Scion Image 2.0 software. The average density (mm2) of both types of cells was estimated for each retina and the data from each of the four MeHgintoxicated groups were compared with the control group values (Student t-test). From the density data we derived isodensity maps, permitting us to estimate the theoretical resolving power (maximum visual acuity) of each of the experimental animals used from the maximum density of cells in the ganglion cell layer. We showed that low acute doses of MeHg/g do not decrease cell densities of either ON bipolar cells or cells in the GCL, compared to controls. There were no significant decreases in cell density (counts) for either cell type in any of the retinal regions, for any of the MeHg doses tested. Thus, acute low-dose MeHg intoxication did not degrade the estimates of the animals theoretical resolving power
|
10 |
Effects of low-dose prenatal methylmercury exposure on long-term neurocognitive outcomes and cardiac autonomic function of children. / 低劑量甲基汞暴露對兒童長期智力發展和心臟自主神經功能的影響 / Di ji liang jia ji gong bao lu dui er tong chang qi zhi li fa zhan he xin zang zi zhu shen jing gong neng de ying xiangJanuary 2011 (has links)
Kwok, Ka Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 124-146). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABSTRACT / In English --- p.ii / In Chinese --- p.v / LIST OF TABLES --- p.vii / LIST OF FIGURE --- p.ix / ABBREVIATIONS / For Units --- p.x / For Prefixes of the International System of Units --- p.x / For Terms Commonly Used --- p.xi / Role of research workers --- p.xv / Chapter CHAPTER 1 --- Overview of methylmercury / Chapter 1.1 --- Source of methylmercury --- p.1 / Chapter 1.2 --- Toxicokinetics --- p.3 / Chapter 1.2.1 --- Absorption and distribution --- p.3 / Chapter 1.2.2 --- Half-life --- p.5 / Chapter 1.2.3 --- Metabolism/Biotransformation --- p.5 / Chapter 1.2.4 --- Biochemical mechanism of toxicity --- p.7 / Chapter 1.3 --- Health effects of mercury exposure --- p.9 / Chapter 1.3.1 --- Adult central nervous system --- p.10 / Chapter 1.3.2 --- The developing central nervous system --- p.11 / Chapter 1.3.3 --- Cardiovascular effects --- p.13 / Chapter 1.3.4 --- Immunotoxicity --- p.14 / Chapter 1.4 --- Biomarkers for prenatal exposure --- p.15 / Chapter 1.5 --- MeHg exposure in high risk populations in Hong Kong --- p.17 / Chapter CHAPTER 2 --- Neurocognitive performance / Chapter 2.1 --- Introduction --- p.19 / Chapter 2.1.1 --- New Zealand --- p.20 / Chapter 2.1.2 --- Seychelles --- p.21 / Chapter 2.1.3 --- Faroe Islands --- p.22 / Chapter 2.1.4 --- The Hong Kong situation --- p.23 / Chapter 2.2 --- Method --- p.23 / Chapter 2.2.1 --- Subjects and study design --- p.23 / Chapter 2.2.2 --- Questionnaires --- p.24 / Chapter 2.2.3 --- Hg concentration measurement --- p.25 / Chapter 2.2.4 --- Neurocognitive measurements --- p.26 / Chapter 2.2.4.1 --- Hong Kong - Wechsler Intelligence Scale for Children --- p.27 / Chapter 2.2.4.2 --- Hong King List Learning Test --- p.28 / Chapter 2.2.4.3 --- Test of Everyday Attention for Children --- p.29 / Chapter 2.2.4.4 --- Boston Naming Test --- p.31 / Chapter 2.2.4.5 --- Grooved Pegboard Test --- p.31 / Chapter 2.2.5 --- Statistical analysis --- p.32 / Chapter 2.3 --- Results --- p.33 / Chapter 2.3.1 --- Subject characteristic --- p.33 / Chapter 2.3.2 --- Test results --- p.34 / Chapter 2.3.3 --- Statistical analysis results --- p.35 / Chapter 2.4 --- Discussion --- p.36 / Chapter CHAPTER 3 --- Cardiac autonomic function / Chapter 3.1 --- Introduction --- p.60 / Chapter 3.1.1 --- Mechanism --- p.60 / Chapter 3.1.2 --- The association between HRV and the ANS --- p.61 / Chapter 3.1.3 --- Clinical applications and related studies --- p.63 / Chapter 3.1.4 --- Associations between MeHg exposure & HRV --- p.64 / Chapter 3.2 --- Methods --- p.65 / Chapter 3.2.1 --- Subjects and study design --- p.65 / Chapter 3.2.2 --- Physical and HRV measurement --- p.66 / Chapter 3.2.3 --- Time domain analysis --- p.68 / Chapter 3.2.4 --- Frequency domain analysis --- p.68 / Chapter 3.2.5 --- Non-linear method --- p.69 / Chapter 3.2.6 --- Statistical analysis --- p.70 / Chapter 3.3 --- Results --- p.71 / Chapter 3.3.1 --- Subjects characteristics --- p.71 / Chapter 3.3.2 --- HRV and statistical analysis results --- p.71 / Chapter 3.4 --- Discussion --- p.73 / Chapter CHAPTER 4 --- Immuno-toxicity / Chapter 4.1 --- Introduction --- p.91 / Chapter 4.2 --- Methods --- p.96 / Chapter 4.2.1 --- Subjects and Study Design --- p.96 / Chapter 4.2.2 --- Cytokine measurement --- p.96 / Chapter 4.2.3 --- Reversibility --- p.98 / Chapter 4.2.4 --- Statistical Analysis --- p.99 / Chapter 4.3 --- Results --- p.101 / Chapter 4.3.1 --- Subject Characteristics --- p.101 / Chapter 4.3.2 --- Atopic and non-atopic diseases group --- p.101 / Chapter 4.3.3 --- Cytokine profiles --- p.102 / Chapter 4.3.4 --- Reversibility --- p.103 / Chapter 4.4 --- Discussion --- p.104 / Chapter CHAPTER 5 --- Conclusion --- p.119 / Reference List --- p.124
|
Page generated in 0.0805 seconds