Spelling suggestions: "subject:"methylobacterium extortion"" "subject:"methylobacterium extorsión""
1 |
Formaldehyde metabolism in Methylobacterium extorquens AM1 /Marx, Christopher James, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 163-174).
|
2 |
Regulation of methanol oxidation genes in Methylobacterium extorquens AM1 /Zhang, Meng, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 106-121).
|
3 |
Dégradation du dichlorométhane et adaptation à la production intracellulaire d'acide chez MethylobacteriumHourcade, Édith Vuilleumier, Stéphane. January 2007 (has links) (PDF)
Thèse de doctorat : Sciences du vivant. Aspects moléculaires et cellulaires de la biologie : Strasbourg 1 : 2007. / Titre provenant de l'écran-titre. Bibliogr. p. 131-143.
|
4 |
Development of Methylobacterium extorquens as a recombinant protein production system and the expression of the heterologous cry1Aa gene from Bacillus thuringiensisBélanger, Louise January 2003 (has links)
Methylobacterium extorquens ATCC55366 is an interesting candidate for large-scale production of recombinant proteins. Development and optimization of this recombinant expression system were done using the green fluorescent protein (GFP) gene cloned into expression vectors (pRK310 and pCM110) as model systems. Selection of efficient GFP-expressing clones, long-term production stability without selection in flasks, effects of selection, oxygen and methanol supplies, were studied during fed-batch fermentations in a 20-l bioreactor. Sequential batch-culture cultivations in shake flasks showed that specific GFP production was constant in the presence of tetracycline. However, the GFP production decreased in the absence of this selective pressure. In fed-batch fermentations of recombinant M. extorquens ATCC 55366 (pMxaF-GFP), overall GFP yields (≈70 mg/g; GFP/cell dry weight) were not affected by the presence or absence of tetracycline, nor by oxygen and methanol concentration oscillations. The cry1Aa gene from Bacillus thuringiensis kurstaki NRD-12 was cloned in pCM110 and then transformed into M. extorquens. Heterologous expression of the cry1Aa gene in M. extorquens AM1 and ATCC 55366 was detected by immunoblot analyses. This study suggests that M. extorquens can be used as a valuable expression system for intracellular recombinant protein production.
|
5 |
Development of Methylobacterium extorquens as a recombinant protein production system and the expression of the heterologous cry1Aa gene from Bacillus thuringiensisBélanger, Louise January 2003 (has links)
No description available.
|
6 |
Investigations of the bacterial sink for plant emissions of chloromethane / Etude du puits bactérien pour les émissions végétales de chlorométhaneFarhan Ul Haque, Muhammad 30 May 2013 (has links)
Le chlorométhane est le plus abondant des composés organo-halogénés dans l’atmosphère et il est impliqué dans la destruction de l’ozone dans la stratosphère. Les sources et les puits de chlorométhane restent mal évalués. Bien que synthétisé et utilisé de manière industrielle, il est principalement produit naturellement, avec comme sources majeures les émissions provenant des végétaux et plus particulièrement de la phyllosphère, qui correspond aux parties aériennes des plantes. Certaines bactéries épiphytes de la phyllosphère sont des méthylotrophes capables d’utiliser des composés organiques sans liaison carbone-carbone comme le méthanol et le chlorométhane comme unique source de carbone et d’énergie pour leur croissance. La plupart des bactéries chlorométhane-dégradantes isolées jusqu’à présent utilisent une voie métabolique pour leur croissance sur chlorométhane appelée voie cmu (pour chloromethane utilisation), caractérisée par l’équipe. L’objectif principal de cette thèse a été de déterminer si des bactéries de la phyllosphère peuvent jouer le rôle de filtre pour l’émission de chlorométhane par les plantes. Dans ce but, un modèle de laboratoire a été mis en place, constitué de la plante Arabidopsis thaliana connue pour produire du chlorométhane par une réaction impliquant le gène HOL1, et la bactérie Methylobacterium extorquens CM4, souche de référence pour l’étude du métabolisme de dégradation du chlorométhane, qui possède la voie cmu et dont le génome complet a été séquencé et analysé. Des variants d’A. thaliana avec différents niveaux d’expression du gène HOL1 (le type sauvage, le mutant homozygote « knock-out » hol1 et un variant HOL1-OX avec surexpression) ont été sélectionnés par PCR et qPCR. Des souches bactériennes chlorométhane-dégradantes ont été isolées à partir de la phyllosphère d’A. thaliana, dont il a été montré qu’elles possèdent la voie cmu. Un bio-rapporteur bactérien pour le chlorométhane a été construit à l’aide d’un plasmide exploitant la région promotrice du gène conservé de la déshalogénase (cmuA) de la souche M. extorquens CM4. Il présente une réponse fluorescente rapide, sensible, et spécifique aux méthyl-halogénés de manière concentration-dépendante. L’application du bio-rapporteur aux trois variants d’A. thaliana étudiés suggère des niveaux d’émissions de chlorométhane différents. L’analyse, par qPCR et qRT-PCR, de l’ADN métagénomique extrait de la surface des feuilles a montré une corrélation entre la proportion relative de bactéries portant le gène cmuA et l’exprimant dans cet environnement, et l’expression du gène HOL1. Ces résultats indiquent qu’une production de chlorométhane, même très modeste par rapport aux fortes émissions de méthanol par A. thaliana, confère un avantage sélectif pour les bactéries épiphytes chlorométhane-dégradantes. Ces dernières pourraient ainsi bien jouer un rôle de filtre pour les émissions de chlorométhane de la phyllosphère vers l’atmosphère. En perspective, de nouvelles expériences complémentaires, basées sur l’analyse par génomique comparative des souches chlorométhane-dégradantes également effectuée dans le cadre du projet et sur une analyse par séquençage à haut-débit initiée dans ce travail, sont proposées pour améliorer la compréhension des mécanismes d’adaptation des bactéries chlorométhane-dégradantes dans la phyllosphère. / Chloromethane is the most abundant halocarbon in the environment, and responsible for substantial ozone destruction in the stratosphere. Sources and sinks of chloromethane are still poorly constrained. Although synthesized and used industrially, chloromethane is mainly produced naturally, with major emissions from vegetation and especially the phyllosphere, i.e. the aerial parts of plants. Some phyllosphere epiphytes are methylotrophic bacteria which can use single carbon compounds such as methanol and chloromethane as the sole source of carbon and energy for growth. Most chloromethane-degrading strains isolated so far utilize the cmu pathway for growth with chloromethane which was characterized by the team. The main objective of this work was to investigate whether epiphytes may act as filters for plant emissions of chloromethane, by using a laboratory bipartite system consisting of the model plant Arabidopsis thaliana, known to produce chloromethane mainly by way of the HOL1 gene, and the reference chloromethane-degrading bacterial strain Methylobacterium extorquens CM4, possessing the cmu pathway and of known genome sequence. Three A. thaliana Col-0 variants with different levels of expression of HOL1, i.e. the wild-type strain, its homozygous HOL1 knockout mutant hol1 and an HOL1-OX HOL1 overexpressor, were selected using PCR and qRT-PCR. Chloromethane-degrading strains were isolated from the A. thaliana phyllosphere, and shown to contain the cmu pathway. A plasmid-based bacterial bioreporter for chloromethane was constructed which exploits the promoter region of the conserved chloromethane dehalogenase gene cmuA of strain CM4. It yields rapid, highly sensitive, specific and methyl halide concentration-dependent fluorescence. Application of the bioreporter to the three A. thaliana variants differing in expression of HOL1 investigated in this work suggested that they indeed synthesize different levels of chloromethane. Analysis by qPCR and qRT-PCR of metagenomic DNA from the leaf surface of these variants showed that the relative proportion and expression of cmuA in this environment paralleled HOL1 gene expression. Taken together, the results obtained indicate that even minor amounts of chloromethane produced by A. thaliana in the face of large emissions of methanol may provide a selective advantage for chloromethane-degrading methylotrophic bacteria in the phyllosphere environment. This suggests that chloromethane-degrading epiphytes may indeed act as filters for emissions of chloromethane from plants. Further experiments are envisaged to further assess the adaptation mechanisms of chloromethane-degrading bacteria in the phyllosphere, building upon the comparative genomic analysis of chloromethane-degrading strains which was also performed in this work, and on the preliminary investigations using high-throughput sequencing that were initiated.
|
7 |
Le rôle des bactéries dans le filtrage du chlorométhane un gaz destructeur de la couche d'ozone : des souches modèles aux communautés microbiennes de sols forestiers / Bacteria as chloromethane sinks : from model strains to forest soil communitiesChaignaud, Pauline 29 June 2016 (has links)
Le chlorométhane (CH3Cl) est un composé organique volatile responsable de plus de 15 % de la dégradation de l’ozone stratosphérique due aux composés chlorés. Il est produit majoritairement par les plantes vivantes ou en décomposition. Les bactéries capables d’utiliser le CH3Cl comme source de carbone pour leur croissance peuvent jouer un rôle de filtre dans les émissions de CH3Cl vers l'atmosphère. Ce processus biologique reste à quantifier dans l'environnement, notamment pour les sols forestiers considérés comme un puits majeur de ce composé.Dans les études environnementales, le gène cmu A est utilisé comme biomarqueur de la dégradation bactérienne du CH3Cl. Il code une chlorométhane méthyltransférase essentielle à la croissance bactérienne avec le CH3Cl parla voie cmu (pour chloromethane utilisation), la seule caractérisée à ce jour. Mon projet de thèse avait un double objectif : i) l’approfondissement des connaissances de l’adaptation au CH3Cl chez une bactérie méthylotrophe modèle, Methylobacterium extorquens CM4; ii) l’exploration de la diversité des bactéries CH3Cl-dégradantes de sols forestiers. L’étude RNAseq chez la souche CM4 a montré que la croissance avec le CH3Cl s'accompagne de différences dans la transcription de 137 gènes de son génome (6.2 Mb) par rapport à sa croissance sur le méthanol (CH3OH). Les gènes de la voie cmu, ainsi que d’autres gènes impliqués dans le métabolisme de cofacteurs essentiels à l’utilisation du CH3Cl par cette voie et eux aussi portés par le plasmide pCMU01 de la souche, en font partie. Les paralogues de ces gènes localisés sur le chromosome ne sont quant à eux pas différentiellement exprimés. En revanche, d’autres gènes du chromosome, potentiellement impliqués dans l’excrétion de protons produits lors de la déshalogénation (hppA), la régénération du NADP+ (pnt), ou le métabolisme du cofacteur tétrahydrofolate(gènes gcvPHT), le sont. L’étude de la diversité des bactéries CH3Cl-dégradantes de sol forestier de la réserve naturelle de Steigerwald (Allemagne) a été réalisée sur des microcosmes par une approche de « Stable Isotope Probing ». Les microorganismes capables d’assimiler le CH3Cl marqué au [13C] incorporent cet isotope lourd du carbone dans leur ADN. L'analyse des séquences amplifiées par PCR des gènes codant l’ARN 16S des fractions d'ADN enrichies en [13C] a permis de mettre en évidence de nouveaux phylotypes, du genre Methylovirgula et de l’ordre des Actinomycetales, distincts de ceux auxquelles les souches dégradant le CH3Cl isolées jusqu'ici sont affiliées. En revanche, les séquences du gène cmuA et d’autres gènes du métabolisme méthylotrophe obtenues par PCR à partir de l'ADN enrichi en [13C] sont très proches de celles des souches CH3Cl-dégradantes connues. Les résultats obtenus suggèrent ainsi que des bactéries ayant acquis par transfert horizontal les gènes de dégradation de la voie cmu ou ne possédant pas de gène cmuA contribuent au filtrage biologique du CH3Cl des sols forestiers. A l'avenir, le couplage de différentes méthodes moléculaires et des approches culturales visera à découvrir de nouvelles voies microbiennes de l’utilisation du CH3Cl, et à caractériser l’abondance et la diversité des métabolismes impliqués dans la dégradation du CH3Cl dans les sols et d'autres compartiments environnementaux. / Chloromethane (CH3Cl) is a volatile organic compound responsible for over 15% of stratospheric ozone degradation due to chlorinated compounds. It is mainly produced by living and decaying plants. Bacteria utilizing CH3Cl as sole carbon and energy source for growth were shown to be involved in the filtering of CH3Cl emissions to the atmosphere. This biological process remains to be quantified in the environment, especially for forest soil, a major CH3Cl sink. The cmuA gene is used as a biomarker of bacterial CH3Cl degradation in environmental studies. It encodes a CH3Cl methyltransferase essential for bacterial growth by the cmu (chloromethane utilization) pathway for growth with CH3Cl and the only one characterized so far. My thesis project had a double aim: i) In depth studies of CH3Cl adaptation of a model methylotrophic bacterium, Methylobacterium extorquens strain CM4; ii) Exploration of bacterial CH3Cl-utilizers in forest. An RNAseq study of strain CM4 has shown that growth with CH3Cl leads to a difference of transcription of 137 genes in its 6.2 Mb genome compared to growth with methanol (CH3OH). Among those, genes of the cmu pathway and other genes involved in the metabolism of essential cofactors for CH3Cl utilization by this pathway, are all plasmid pCMU01-encoded. Paralogous genes located on the chromosome were not differentially expressed. On the other hand, other chromosomal genes potentially involved in extruding protons generated during CH3Cl deshalogenation (hppA), NADP+ regeneration (pnt), or in the cofactor tetrahydrofolate metabolism (gcvPHT) were differentially expressed. The diversity of CH3Cl-degrading bacteria in forest soil of the German natural park of Steigerwald was studied in microcosms using stable isotope probing. Microorganisms able to assimilate labeled [13C]- CH3Cl incorporate this heavy carbon isotope in their DNA. Sequence analysis of the PCR-amplified 16S RNA encoding gene from [13C]-DNA fractions uncovered phylotypes of the genus Methylovirgula and of the order of the Actinomycetales, which were not associated with bacterial CH3Cl degradation so far. In contrast, PCR-amplified sequences of cmuA and other genes of methylotrophic metabolism were closely related to known CH3Cl-degrading isolates. These results suggest that bacteria containing genes of the cmu pathway acquired by horizontal gene transfer as well as bacteria lacking the cmu pathway contribute to biological filtering of CH3Cl in forest soil. Future experiments coupling molecular and culture methods will aim to discover new CH3Cl-degrading pathways and to characterize the abundance and diversity of CH3Cl-degradation metabolism in soil and other environmental compartments.
|
8 |
Conception et production de biopolyesters avec groupements réactifs par Methylobacterium extorquens ATCC 55366 une voie vers de nouveaux matériaux pour l'ingénierie tissulaire / Design and production of functionalized biopolyesters by methylobacterium extorquens ATCC 55366 : toward new tissue engineering materialsHöfer, Heinrich Friedrich Philipp Till Nikolaus January 2009 (has links)
Vascular networks are required to support the formation and function of three-dimensional tissues. Biodegradable scaffolds are being considered in order to promote vascularization where natural regeneration of lost or destroyed vascular networks fails. Particularly; composite materials are expected to fulfill the complex demands of a patient's body to support wound healing. Microbial biopolyesters are being regarded as such second and third generation biomaterials. Methylobacterium extorquens is one of several microorganisms that should be considered for the production of advanced polyhydroxyalkanoates (PHAs). M. extorquens displays a distinct advantage in that it is able to utilize methanol as an inexpensive substrate for growth and biopolyester production. The design of functionalized PHAs, which would be made of both saturated short-chain-length (scl, C [less than or equal to] 5) and unsaturated medium-chain-length (mcl, 6 [less than or equal to] C [less than or equal to] 14) monomeric units, aimed at combining desirable material properties of inert scl/mcl-PHAs with those of functionalized mcl-PHAs. By independently inserting the phaC1 or the phaC2 gene from Pseudomonas fluorescens GK13, recombinant M. extorquens strains were obtained which were capable of producing PHAs containing C-C double bonds. A fermentation process was developed to obtain gram quantities of biopolyesters employing the recombinant M. extorquens ATCC 55366 strain which harbored the phaC2 gene of P. fluorescens GK13, the better one of the two strains at incorporating unsaturated monomeric units. The PHAs produced were found in a blend of scl-PHAs and functionalized scl/mcl-PHAs (4 [less than or equal to] C [less than or equal to] 6), which were the products of the native and of the recombinant PHA synthase, respectively. Thermo-mechanical analysis confirmed that the functionalized scl/mcl-PHAs exhibited the desirable material properties expected. This project contributed to current research on polyhydroxyalkanoates at different levels. The terminal double bonds of the functionalized scl/mcl-PHAs are amenable to chemical modifications and could be transformed into reactive functional groups for covalently linking other biomacromolecules. It is anticipated that these biopolyesters will be utilized as tissue engineering materials in the future, due to their functionality and thermo-mechanical properties.
|
9 |
Investigations of the bacterial sink for plant emissions of chloromethaneFarhan Ul Haque, Muhammad 30 May 2013 (has links) (PDF)
Chloromethane is the most abundant halocarbon in the environment, and responsible for substantial ozone destruction in the stratosphere. Sources and sinks of chloromethane are still poorly constrained. Although synthesized and used industrially, chloromethane is mainly produced naturally, with major emissions from vegetation and especially the phyllosphere, i.e. the aerial parts of plants. Some phyllosphere epiphytes are methylotrophic bacteria which can use single carbon compounds such as methanol and chloromethane as the sole source of carbon and energy for growth. Most chloromethane-degrading strains isolated so far utilize the cmu pathway for growth with chloromethane which was characterized by the team. The main objective of this work was to investigate whether epiphytes may act as filters for plant emissions of chloromethane, by using a laboratory bipartite system consisting of the model plant Arabidopsis thaliana, known to produce chloromethane mainly by way of the HOL1 gene, and the reference chloromethane-degrading bacterial strain Methylobacterium extorquens CM4, possessing the cmu pathway and of known genome sequence. Three A. thaliana Col-0 variants with different levels of expression of HOL1, i.e. the wild-type strain, its homozygous HOL1 knockout mutant hol1 and an HOL1-OX HOL1 overexpressor, were selected using PCR and qRT-PCR. Chloromethane-degrading strains were isolated from the A. thaliana phyllosphere, and shown to contain the cmu pathway. A plasmid-based bacterial bioreporter for chloromethane was constructed which exploits the promoter region of the conserved chloromethane dehalogenase gene cmuA of strain CM4. It yields rapid, highly sensitive, specific and methyl halide concentration-dependent fluorescence. Application of the bioreporter to the three A. thaliana variants differing in expression of HOL1 investigated in this work suggested that they indeed synthesize different levels of chloromethane. Analysis by qPCR and qRT-PCR of metagenomic DNA from the leaf surface of these variants showed that the relative proportion and expression of cmuA in this environment paralleled HOL1 gene expression. Taken together, the results obtained indicate that even minor amounts of chloromethane produced by A. thaliana in the face of large emissions of methanol may provide a selective advantage for chloromethane-degrading methylotrophic bacteria in the phyllosphere environment. This suggests that chloromethane-degrading epiphytes may indeed act as filters for emissions of chloromethane from plants. Further experiments are envisaged to further assess the adaptation mechanisms of chloromethane-degrading bacteria in the phyllosphere, building upon the comparative genomic analysis of chloromethane-degrading strains which was also performed in this work, and on the preliminary investigations using high-throughput sequencing that were initiated.
|
Page generated in 0.1047 seconds