• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resolução de equações de terceiro grau através de cônicas

Lima, Rosana Nogueira de 29 April 1999 (has links)
Made available in DSpace on 2016-04-27T16:57:56Z (GMT). No. of bitstreams: 1 dissertacao_rosana_lima.pdf: 743608 bytes, checksum: f0e3154b93715613f934ccac523facf4 (MD5) Previous issue date: 1999-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho teve por objetivo estudar métodos geométricos e algébricos de resolução de equações de terceiro grau, observando as vantagens e desvantagens de cada um. Para isso, construímos uma seqüência didática, enfatizando o método geométrico de Omar Khayyam, matemático árabe do século XII. Foi feita uma pesquisa histórica, e este método foi escolhido por utilizar o quadro geométrico, quadro este pouco explorado em sala de aula. Utilizamos, também, na seqüência, a fórmula de Cardano e o dispositivo de Briot-Ruffini para resolver equações cúbicas. Aplicamos nossa seqüência a dois grupos. O primeiro, formado por quatro alunos do curso de Ciência da Computação da PUC-SP. O segundo, formado por alunos da terceira série do Ensino Médio, do Colégio Vera Cruz; no início, contávamos com 32 alunos, ao final, eles eram em número de 6. A abstenção, ao final da aplicação, se deve, principalmente, à época em que a seqüência foi aplicada. Com resultados obtidos, vemos que o quadro geométrico dificilmente é usado pelos alunos ao tentar resolver um problema. O método de Omar Khayyam foi considerado o mais prático deles, pois pode ser usado para qualquer equação cúbica. A fórmula de Cardano causa problemas aos alunos que não conhecem números complexos e o dispositivo de Briot-Ruffini só pode ser usado quando a equação que se quer resolver tem uma raiz inteira. Os alunos perceberam, também, que podem escolher que caminho seguir, para resolver uma equação de terceiro grau, dependendo de seus coeficientes. Além disso, o quadro geométrico, agora, é levado em consideração

Page generated in 0.0558 seconds