• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Podobnostní vyhledávání v databázích proteinových struktur / Similarity Search in Protein Structure Databases

Galgonek, Jakub January 2012 (has links)
Proteins are one of the most important biopolymers having a wide range of functions in living organisms. Their huge functional diversity is achieved by their ability to fold into various 3D structures. Moreover, it has been shown that proteins sharing similar structure often share also other properties (e.g, a biological function, an evolutionary origin, etc.). Therefore, protein structures and methods to identify their similarities are so widely studied. In this thesis, we introduce a system allowing similarity search in pro- tein structure databases. The system retrieves, given a query structure, all database structures being similar to the query structure. It employs several key components. We have introduced a novel similarity measure assigning similarity scores to pairs of protein structures. We have designed specific access method based on LAESA metric indexing and using the proposed measure. The access method allows to search similar structures more effi- ciently than when a sequential scan of a database is employed. To achieve further speedup, the measure and the access method have been parallelized, resulting in almost linear speedup with the respect to the number of available cores. The last component is a web user interface that allows to accept a query structure and to present a list of...
2

Modifikace metody Pivot Tables pro perzistentní metrické indexování / Modification of Pivot Tables method for persistent metric indexing

Moško, Juraj January 2011 (has links)
The pivot tables is one of the most effective metric access method optimized for a number of distance computations in similarity search. In this work the new modification of the pivot tables method was proposed that is besides distance computations optimized also for a number of I/O operations. Proposed Clustered pivot tables method is indexing clusters of similar objects that were created by another metric access method - the M-tree. The indexing of clustered objects has a positive effect for searching within indexed database. Whereas the clusters are paged in second memory, page containing such cluster, which do not satisfy particular query, is not accessed in second memory at all. Non-relevant objects, that are out of the query range, are not loaded into memory, what has the effect of decreasing number of I/O operations and total volume of transferred data. The correctness of proposed approach was experimentally proved and experimental results of proposed method was compared to selected metric access methods.
3

Operação de carga-rápida (bulk-loading) em métodos de acesso métricos / Bulk-loading Dynamic Metric Acess Methods

Thiago Galbiatti Vespa 10 December 2007 (has links)
O grau de similaridade entre elementos de dados é o fator primordial para a recuperação de informações em Sistemas Gerenciadores de Bases de Dados que manipulam dados complexos, como seqüências genéticas, séries temporais e dados multimídia (imagens, áudios, vídeos, textos longos). Para responder a essas consultas em um tempo reduzido, faz-se necessário utilizar métodos que usam métricas para avaliar a similaridade entre os elementos. Esses métodos são conhecidos como Métodos de Acesso Métricos. Dentre os mais conhecidos na literatura estão a M-tree e a Slim-tree. Existem duas maneiras de executar as operações de construção de índices em qualquer método de acesso: inserindo elemento a elemento ou usando a operação de carga-rápida (bulk-loading). O primeiro tipo de construção é comum e necessário para todo tipo de método de indexação dinâmico. Já as operações de carga-rápida são utilizadas para conjuntos de dados maiores, como por exemplo, na recuperação de backups em bases de dados ou na criação posterior de índices. Nessas situações, a inserção individual tende a ser mais demorada. Realizar uma carga-rápida possibilita a construção de índices com melhor eficiência e em menor tempo, pois há a disponibilidade de todos os dados no instante da criação da estrutura de índices, possibilitando explorar as propriedades do conjunto como um todo. Os Sistemas Gerenciadores de Base de Dados oferecem operações de carga-rápida dos dados nos métodos tradicionais, as quais devem ser supridas também nos Métodos de Acesso Métricos. Neste trabalho, são apresentadas três abordagens, uma técnica para carga-rápida dos dados em Métodos de Acesso Métricos e foi desenvolvido um algoritmo baseado nessa técnica para construir uma Slim-tree. Este é o primeiro algoritmo de carga-rápida baseada em amostragem que sempre produz uma Slim-tree válida, portanto é o primeiro descrito na literatura que pode ser incluído em um Sistema Gerenciador de Base de Dados. Os experimentos descritos neste trabalho mostram que o algoritmo proposto mantém bom agrupamento dos dados e supera o desempenho dos métodos de inserção seqüencial levando em conta tanto o desempenho de construção quanto à eficiência para realizar consultas / The similarity degree between data elements is the primordial factor for information retrieval in databases that handle complex data, such as genetic sequences, time series and multimedia objects (long images, audio, videos, texts). To answer these queries in a reduced time, it is necessary methods that use metrics to evaluate the similarity between elements. These methods are known as Metric Access Methods. The most known Metric Access Methods in the literature are the M-tree and the Slim-tree. There are two ways to build index in any access method: inserting element one by one or using the bulk-load operation. The first build type is very common and required for all kinds of dynamic access methods. The bulk-load operations are used for bigger datasets, as for example, in the recovery of backups and re-creation of database indexes. In these situations, the individual insertion takes much time. The bulk-load operation makes it possible to construct indexes more efficiently and faster, because it has the availability of the whole data when the index structure are created, and thus, it is possible to explore the properties of the whole set. Database Management Systems offer bulk-load operations for the traditional methods, so it is important that they can be also supplied for Metric Access Methods. This work presents three bulk-loading approaches and it proposes a technique to bulk-load data into Metric Access Methods. An algorithm based on this technique was developed to construct a Slim-tree. This is the first bulk-load algorithm based on sampling that always produces a valid Slim-tree, therefore is the first one described in literature that can be enclosed in a Database Management System. The experiments show that this algorithm keeps good clustering of data and in such a way that it surpasses the performance of sequential insertion, taking into account the construction performance and the efficiency to perform queries
4

Explorando conceitos da teoria de espaços métricos em consultas por similaridade sobre dados complexos / Exploring concepts of metric space theory in similarity queries over complex data

Ives Renê Venturini Pola 25 August 2010 (has links)
Estruturas de indexação para domínios métricos são úteis para agilizar consultas por similaridade sobre dados complexos, tais como imagens, onde o custo computacional da comparação de dois itens de dados geralmente é alto. O estado da arte para executar consultas por similaridade está centrado na utilização dos chamados \"Métodos de Acesso Métrico\" (MAM). Tais métodos consideram os dados como elementos de um espaço métrico, onde apenas valem as propriedades fundamentais para que um espaço seja considerado métrico, onde a única informação que os MAMs utilizam é a medida de similaridade entre pares de elementos do domínio. No campo teórico, espaços métricos são extensamente estudados e servem de base para diversas áreas da Matemática. No entanto, a maioria dos trabalhos que têm sido desenvolvidos em Computação se restringem a utilizar as definições básicas desses espaços, e não foram encontrados estudos que explorem em mais profundidade os muitos conceitos teóricos existentes. Assim, este trabalho aplica conceitos teóricos importantes da Teoria de Espaços Métricos para desenvolver técnicas que auxiliem o tratamento e a manipulação dos diversos dados complexos, visando principalmente o desenvolvimento de métodos de indexação mais eficientes. É desenvolvida uma técnica para realizar um mapeamento de espaços métricos que leva à atenuação do efeito da maldição da dimensionalidade, a partir de uma aplicação lipschitziana real baseada em uma função de deformação do espaço das distâncias entre os elementos do conjunto. Foi mostrado que uma função do tipo exponecial deforma as distâncias de modo a diminuir os efeitos da maldição da dimensionalidade, melhorando assim o desempenho nas consultas. Uma segunda contribuição é o desenvolvimento de uma técnica para a imersão de espaços métricos, realizada de maneira a preservar a ordem das distâncias, possibilitando a utilização de propriedades no espaço de imersão. A imersão de espaços métricos no \' R POT. n\' possibilita a utilização da lei dos cossenos e assim viabiliza o cálculo de distâncias entre elementos e um hiperplano métrico, permitindo aumentar a agilidade à consultas por similaridade. O uso do hiperplano métrico foi exemplificado construindo uma árvore binária métrica, e também foi aplicado em um método de acesso métrico, a família MMH de métodos de acesso métrico, melhorando o particionamento do espaço dos dados / The access methods designed for metric domains are useful to answer similarity queries on any type of data, being specially useful to index complex data, such as images, where the computacional cost of comparison are high. The main mecanism used up to now to perform similarity queries is centered on \"Metric Acess Methods\" (MAM). Such methods consider data as elements that belong to a metric space, where only hold the properties that define the metric space. Therefore, the only information that a MAM can use is the similarity measure between pairs of elements in the domain. Metric spaces are extremelly well studied and is the basis for many mathematics areas. However, most researches from computer science are restrained to use the basic properties of metric spaces, not exploring the various existing theorical concepts. This work apply theoretical concepts of metric spaces to develop techniques aiding the treatment and manipulation of diverse complex data, aiming at developing more efficient indexing methods. A technique of mapping spaces was developed in order to ease the dimensionality curse effects, basing on a real lipschitz application that uses a stretching function that changes the distance space of elements. It was shown that an exponential function changes the distances space reducing the dimensionality curse effects, improving query operations. A second contribution is the developing of a technique based on metric space immersion, preserving the distances order between pairs of elements, allowing the usage of immersion space properties. The immersion of metric spaces into \'R POT. n\' allow the usage of the cossine law leading to the determination of distances between elements and a hiperplane, forming metric hiperplanes. The use of the metric hiperplanes lead to an improvement of query operations performance. The metric hiperplane itself formed the binary metric tree, and when applied to a metric access method, lead the formation of a family of metric access methods that improves the metric space particioning achieving faster similarity queries
5

Agrupamento de dados complexos para apoiar consultas por similaridade com tratamento de restrições / Clustering complex data for processing constrained similarity queries

Jessica Andressa de Souza 21 November 2018 (has links)
Devido aos avanços tecnológicos ocorridos nos últimos anos, houve um aumento na quantidade e complexidade de dados gerados. Assim, aprofundou-se a necessidade do desenvolvimento de estratégias eficientes que permitam o armazenamento, a recuperação e a representação resumida desses tipos de dados complexos. Dentre as estratégias exploradas pelos pesquisadores da área para atender a esses propósitos estão os Métodos de Acesso. Esses métodos têm como objetivo indexar os dados de maneira eficaz para reduzir o tempo de consulta. Além disso, eles têm sido aplicados para apoiar o processamento de técnicas de Mineração de Dados, como a Detecção de Agrupamentos. Dentre os métodos de acesso, as estruturas de indexação métrica são construídas usando apenas o critério baseado na distância entre os elementos do conjunto de dados em questão, i.e. operações de similaridade sobre as características intrínsecas dos dados. Desse modo, nem sempre os resultados correspondem ao contexto desejado pelo usuário. Este trabalho explorou o desenvolvimento de algoritmos que permitam aos métodos de acesso métrico processarem detecção de agrupamento de dados para auxiliar o processamento de consultas com maior carga semântica; visando contribuir no tratamento da questão da eficiência de abordagens que envolvam operações por similaridade (por exemplo, técnicas de mineração de dados e consultas por similaridade). Diante deste contexto, foram desenvolvidas três abordagens, a primeira apresenta o método clusMAM (Unsupervised Clustering using Metric Access Methods), o qual tem como objetivo apresentar um agrupamento dos dados com a aplicação de um Método de Acesso Métrico a partir de um conjunto resumido dos dados. A segunda abordagem apresenta a abordagem CCkNN (Class-Constraint k-NN) para lidar com o problema de restrições de múltiplas classes sobre o espaço de busca. Por fim, a terceira abordagem apresenta o método CfQ (Clustering for Querying) realizando a integração das técnicas clusMAM com CCkNN, empregando os pontos positivos de cada estratégia adotada pelos algoritmos. No geral, os experimentos realizados mostram que os métodos propostos contribuem de maneira efetiva na redução de medidas de similaridade requiridas durante um processamento de técnicas que são baseadas em computações de distância. / Due to the technological advances over the last years, both the amount and variety of data available have been increased at a fast pace. Thus, this scenario has influenced the development of effective strategies for the processing, summarizing, as well as to provide fast and automatic understanding of such data. The Access Methods are strategies that have been explored by researchers in the area to aid these purposes. These methods aim to effectively index data to reduce the time required for processing similarity querying. In addition, they have been applied to aid the processing of Data Mining techniques, such as Clustering Detection. Among the access methods, the metric structures are constructed applying only the criterion based on the distance computation between the elements of the dataset, i.e. similarity operations on the intrinsic characteristics of the dataset. Thus, the results do not always correspond to the context desired by users. This work explored the development of algorithms that allow metric access methods to process queries with a higher semantic load, aimed at contributing to the treatment of the quality question on the results of approaches that involve similarity operation (for example, data mining techniques and similarity queries). In this context, three approaches have been developed: the first approach presents the method clusMAM (Unsupervised Clustering using Metric Access Methods), which aims to display a clustering from a dataset with the application of a Metric Access Method from a summarized set. The second approach presents the CCkNN approach to dealing with the problem of multi-class constraints on the search space. Finally, the third proposal presents the method CfQ (Clustering for Querying) by integrating the techniques clusMAM with CCkNN, using the positive points of each strategy applied by the algorithms. In general, the experiments carried out showed that the proposed methods can contribute to an effective way of reducing similarity computations, which is required during a processing of techniques that are based on distance computations.
6

Techniques for indexing large and complex datasets with missing attribute values. / Técnicas de indexação de grandes conjuntos de dados complexos com valores de atributos faltantes.

Safia Brinis 18 July 2016 (has links)
Due to the increasing amount and complexity of data processed in real world applications, similarity search became a vital task to store and retrieve such data. However, missing attribute values are very frequent and metric access methods (MAMs), designed to support similarity search, do not operate on datasets when attribute values are missing. Currently, the approach to use the existing indexing techniques on datasets with missing attribute values just use an indicator to identify the missing values and employ a traditional indexing technique. Although, this approach can be applied over multidimensional indexing techniques, it is impractical for metric access methods. This dissertation presents the results of a research conducted to identify and deal with the issues related to indexing and querying datasets with missing values in metric spaces. An empirical analysis of the metric access methods when applied on incomplete datasets leads us to identify two main issues: distortion of the internal structure of the index when data are missing at random and skew of the index structure when data are not missing at random. Based on those findings, a new variant of the Slim-tree access method, called Hollow-tree, is presented. It employs new techniques that are capable to handle missing data issues when missingness is ignorable. The first technique includes a set of indexing policies that allow to index objects with missing attribute values and prevent distortions to occur in the internal structure of the indexes. The second technique targets the similarity queries to improve the query performance over incomplete datasets. This technique employs the fractal dimension of the dataset and the local density around the query object to estimate an ideal radius able to achieve an accurate query answer, considering data with missing values as a potential response. Results from experiments with a variety of real and synthetic datasets show that Hollow-tree achieves nearly 100% of precision and recall for Range queries and more than 90% for k Nearest Neighbor queries, while Slim-tree access method deteriorates with the increasing amount of missing values. The results confirm that the indexing technique helps to establish consistency in the index structure and the searching technique achieves a remarkable performance. When combined, the new techniques allow to explore properly all the available data even with high amounts of missing attribute values. As they are independent of the underlying access method, they can be adopted by a broad range of metric access methods, allowing to extend the class of MAMs. / O crescimento em quantidade e complexidade dos dados processados e armazenados torna a busca por similaridade uma tarefa fundamental para tratar esses dados. No entanto, atributos faltantes ocorrem freqüentemente, inviabilizando os métodos de acesso métricos (MAMs) projetados para apoiar a busca por similaridade. Assim, técnicas de tratamento de dados faltantes precisam ser desenvolvidas. A abordagem mais comum para executar as técnicas de indexação existentes sobre conjuntos de dados com valores faltantes é usar um indicador de valores faltantes e usar as técnicas de indexação tradicionais. Embora, esta técnica seja útil para os métodos de indexação multidimensionais, é impraticável para os métodos de acesso métricos. Esta dissertação apresenta os resultados da pesquisa realizada para identificar e lidar com os problemas de indexação e recuperação de dados em espaços métricos com valores faltantes. Uma análise experimental dos MAMs aplicados a conjuntos de dados incompletos identificou dois problemas principais: distorção na estrutura interna do índice quando a falta é aleatória e busca tendenciosa na estrutura do índice quando o processo de falta não é aleatório. Uma variante do MAM Slim-tree, chamada Hollow-tree foi proposta com base nestes resultados. A Hollow-tree usa novas técnicas de indexação e de recuperação de dados com valores faltantes quando o processo de falta é aleatório. A técnica de indexação inclui um conjunto de políticas de indexação que visam a evitar distorções na estrutura interna dos índices. A técnica de recuperação de dados melhora o desempenho das consultas por similaridade sobre bases de dados incompletas. Essas técnicas utilizam o conceito de dimensão fractal do conjunto de dados e a densidade local da região de busca para estimar um raio de busca ideal para obter uma resposta mais correta, considerando os dados com valores faltantes como uma resposta potencial. As técnicas propostas foram avaliadas sobre diversos conjuntos de dados reais e sintéticos. Os resultados mostram que a Hollow-tree atinge quase 100% de precisão e revocação para consultas por abrangência e mais de 90% para k vizinhos mais próximos, enquanto a Slim-tree rapidamente deteriora com o aumento da quantidade de valores faltantes. Tais resultados indicam que a técnica de indexação proposta ajuda a estabelecer a consistência na estrutura do índice e a técnica de busca pode ser realizada com um desempenho notável. As técnicas propostas são independentes do MAM básico usado e podem ser aplicadas em uma grande variedade deles, permitindo estender a classe dos MAMs em geral para tratar dados faltantes.
7

"Visualizando a organização e o comportamento de estruturas métricas: aplicações em consultas por similaridade" / Visualizing the organization and behavior of metric access methods: Applications in similarity queries

Fábio Jun Takada Chino 23 April 2004 (has links)
O uso da computação em uma variedade cada vez maior de aplicações fez com que os Sistemas de Gerenciamento de Bases de Dados (SGBD) passassem a ser utilizados para armazenar os mais diversos tipos de dados complexos, como imagens, sons e cadeias de DNA entre outros. Consultas baseadas em relações de ordem total ou igualdade não podem ser aplicadas ou tem aplicações limitadas quando executadas nestes conjuntos de dados. Logo, efetua-se consultas por similaridade baseadas no conteúdo de dados desses tipos. Se tais conjuntos de dados podem ser representados em um espaço métrico, é possível utilizar os Métodos de Acesso Métricos (MAM), como a Slim-Tree, a M-Tree e a DBM-Tree, para otimizar as consultas por similaridade. Porém, os MAM são muito difíceis de compreender e analisar devido à complexidade de suas estruturas. Esta dissertação apresenta um sistema de visualização que permite a inspeção visual da organização e do comportamento de MAM, provendo aos desenvolvedores e administradores de SGBD uma forma rápida e fácil para obter informações essenciais sobre estas estruturas que podem levar a melhorias no desempenho de consultas e outras operações. / The use of computers by an increasing variety of applications led the Database Management Systems (DBMS) to be used to store a wide range of complex data types, such as images, sounds, DNA chains, etc. Queries based on the total order relationship and/or equality can not be applied or have a limited range of applications when performed over these datasets. It is necessary to use similarity queries based on the contents of the data. If these datasets can be represented as metric spaces, it is possible to use the Metric Access Methods (MAM), such as the Slim-Tree, the M-Tree and the DBM-Tree, to optimize similarity queries. However, MAM are very hard to understand and analyze due to their complex structures. This work presents a visualization system that allows the visual inspection of the organization and the behavior of MAM. The usage of this system provides to MAM developers and database administrators, an easy and fast way to acquire information about key aspects of these structures, which can lead to improvements on the performance of queries and other operations.
8

Techniques for indexing large and complex datasets with missing attribute values. / Técnicas de indexação de grandes conjuntos de dados complexos com valores de atributos faltantes.

Brinis, Safia 18 July 2016 (has links)
Due to the increasing amount and complexity of data processed in real world applications, similarity search became a vital task to store and retrieve such data. However, missing attribute values are very frequent and metric access methods (MAMs), designed to support similarity search, do not operate on datasets when attribute values are missing. Currently, the approach to use the existing indexing techniques on datasets with missing attribute values just use an indicator to identify the missing values and employ a traditional indexing technique. Although, this approach can be applied over multidimensional indexing techniques, it is impractical for metric access methods. This dissertation presents the results of a research conducted to identify and deal with the issues related to indexing and querying datasets with missing values in metric spaces. An empirical analysis of the metric access methods when applied on incomplete datasets leads us to identify two main issues: distortion of the internal structure of the index when data are missing at random and skew of the index structure when data are not missing at random. Based on those findings, a new variant of the Slim-tree access method, called Hollow-tree, is presented. It employs new techniques that are capable to handle missing data issues when missingness is ignorable. The first technique includes a set of indexing policies that allow to index objects with missing attribute values and prevent distortions to occur in the internal structure of the indexes. The second technique targets the similarity queries to improve the query performance over incomplete datasets. This technique employs the fractal dimension of the dataset and the local density around the query object to estimate an ideal radius able to achieve an accurate query answer, considering data with missing values as a potential response. Results from experiments with a variety of real and synthetic datasets show that Hollow-tree achieves nearly 100% of precision and recall for Range queries and more than 90% for k Nearest Neighbor queries, while Slim-tree access method deteriorates with the increasing amount of missing values. The results confirm that the indexing technique helps to establish consistency in the index structure and the searching technique achieves a remarkable performance. When combined, the new techniques allow to explore properly all the available data even with high amounts of missing attribute values. As they are independent of the underlying access method, they can be adopted by a broad range of metric access methods, allowing to extend the class of MAMs. / O crescimento em quantidade e complexidade dos dados processados e armazenados torna a busca por similaridade uma tarefa fundamental para tratar esses dados. No entanto, atributos faltantes ocorrem freqüentemente, inviabilizando os métodos de acesso métricos (MAMs) projetados para apoiar a busca por similaridade. Assim, técnicas de tratamento de dados faltantes precisam ser desenvolvidas. A abordagem mais comum para executar as técnicas de indexação existentes sobre conjuntos de dados com valores faltantes é usar um indicador de valores faltantes e usar as técnicas de indexação tradicionais. Embora, esta técnica seja útil para os métodos de indexação multidimensionais, é impraticável para os métodos de acesso métricos. Esta dissertação apresenta os resultados da pesquisa realizada para identificar e lidar com os problemas de indexação e recuperação de dados em espaços métricos com valores faltantes. Uma análise experimental dos MAMs aplicados a conjuntos de dados incompletos identificou dois problemas principais: distorção na estrutura interna do índice quando a falta é aleatória e busca tendenciosa na estrutura do índice quando o processo de falta não é aleatório. Uma variante do MAM Slim-tree, chamada Hollow-tree foi proposta com base nestes resultados. A Hollow-tree usa novas técnicas de indexação e de recuperação de dados com valores faltantes quando o processo de falta é aleatório. A técnica de indexação inclui um conjunto de políticas de indexação que visam a evitar distorções na estrutura interna dos índices. A técnica de recuperação de dados melhora o desempenho das consultas por similaridade sobre bases de dados incompletas. Essas técnicas utilizam o conceito de dimensão fractal do conjunto de dados e a densidade local da região de busca para estimar um raio de busca ideal para obter uma resposta mais correta, considerando os dados com valores faltantes como uma resposta potencial. As técnicas propostas foram avaliadas sobre diversos conjuntos de dados reais e sintéticos. Os resultados mostram que a Hollow-tree atinge quase 100% de precisão e revocação para consultas por abrangência e mais de 90% para k vizinhos mais próximos, enquanto a Slim-tree rapidamente deteriora com o aumento da quantidade de valores faltantes. Tais resultados indicam que a técnica de indexação proposta ajuda a estabelecer a consistência na estrutura do índice e a técnica de busca pode ser realizada com um desempenho notável. As técnicas propostas são independentes do MAM básico usado e podem ser aplicadas em uma grande variedade deles, permitindo estender a classe dos MAMs em geral para tratar dados faltantes.
9

Fast and Scalable Outlier Detection with Metric Access Methods / Detecção Rápida e Escalável de Casos de Exceção com Métodos de Acesso Métrico

Bispo Junior, Altamir Gomes 25 July 2019 (has links)
It is well-known that the existing theoretical models for outlier detection make assumptions that may not reflect the true nature of outliers in every real application. This dissertation describes an empirical study performed on unsupervised outlier detection using 8 algorithms from the state-of-the-art and 8 datasets that refer to a variety of real-world tasks of practical relevance, such as spotting cyberattacks, clinical pathologies and abnormalities occurring in nature. We present our lowdown on the results obtained, pointing out to the strengths and weaknesses of each technique from the application specialists point of view, which is a shift from the designer-based point of view that is commonly adopted. Many of the techniques had unfeasibly high runtime requirements or failed to spot what the specialists consider as outliers in their own data. To tackle this issue, we propose MetricABOD: a novel ABOD-based algorithm that makes the analysis up to thousands of times faster, still being in average 26% more accurate than the most accurate related work. This improvement is tantamount to practical outlier detection in many real-world applications for which the existing methods present unstable accuracy or unfeasible runtime requirements. Finally, we studied two collections of text data to show that our MetricABOD works also for adimensional, purely metric data. / É conhecido e notável que os modelos teóricos existentes empregados na detecção de outliers realizam assunções que podem não refletir a verdadeira natureza dos outliers em cada aplicação. Esta dissertação descreve um estudo empírico sobre detecção de outliers não-supervisionada usando 8 algoritmos do estado-da-arte e 8 conjuntos de dados que foram extraídos de uma variedade de tarefas do mundo real de relevância prática, tais como a detecção de ataques cibernéticos, patologias clínicas e anormalidades naturais. Apresentam-se considerações sobre os resultados obtidos, apontando os pontos positivos e negativos de cada técnica do ponto de vista do especialista da aplicação, o que representa uma mudança do embasamento rotineiro no ponto de vista do desenvolvedor da técnica. A maioria das técnicas estudadas apresentou requerimentos de tempo impraticáveis ou falhou em encontrar o que os especialistas consideram como outliers nos conjuntos de dados confeccionados por eles próprios. Para lidar-se com esta questão, foi desenvolvido o método MetricABOD: um novo algoritmo baseado no ABOD que torna a análise milhares de vezes mais veloz, sendo ainda em média 26% mais acurada do que o trabalho relacionado mais acurado. Esta melhoria equivale a tornar a busca por outliers uma tarefa factível em muitas aplicações do mundo real para as quais os métodos existentes apresentam resultados instáveis ou requerimentos de tempo impassíveis de realização. Finalmente, foram também estudadas duas coleções de dados adimensionais para mostrar que o novo MetricABOD funciona também para dados puramente métricos.
10

Podobnostní vyhledávání v databázích hmotnostních spekter / Similarity search in Mass Spectra Databases

Novák, Jiří January 2013 (has links)
Shotgun proteomics is a widely known technique for identification of protein and peptide sequences from an "in vitro" sample. A tandem mass spectrometer generates tens of thousands of mass spectra which must be annotated with peptide sequences. For this purpose, the similarity search in a database of theoretical spectra generated from a database of known protein sequences can be utilized. Since the sizes of databases grow rapidly in recent years, there is a demand for utilization of various database indexing techniques. We investigate the capabilities of (non)metric access methods as the database indexing techniques for fast and approximate similarity retrieval in mass spectra databases. We show that the method for peptide sequences identification is more than 100x faster than a sequential scan over the entire database while more than 90% of spectra are correctly annotated with peptide sequences. Since the method is currently suitable for small mixtures of proteins, we also utilize a precursor mass filter as the database indexing technique for complex mixtures of proteins. The precursor mass filter followed by ranking of spectra by a modification of the parametrized Hausdorff distance outperforms state-of-the-art tools in the number of identified peptide sequences and the speed of search. The...

Page generated in 0.1134 seconds