• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Mg-doped GaN thin film grown by PAMBE

Chen, Yu-hao 03 August 2010 (has links)
We grew Mg-doped of GaN on GaN template by plasma-assisted molecular beam epitaxy (PAMBE) and measured these samples by Hall measurement, I-V curve measurement, PL, Raman scattering, SEM and AFM. The results of Hall measurement of these samples showed that the conducting type is n-type. However, I-V measurement showed these samples to have a behavior of p-n junction between Mg-doped GaN film and GaN template. For optical properties, Raman scattering spectrum did not detect a peak at 656 cm-1 which indicates Mg-N vibration; PL measurement showed the emission peak of growing samples shifted 0.03eV toward to low photon energy. The results of surface analysis showed a smooth surfaces at Ga droplet area while many pin hole was formed at ¡§dry¡¨ area. Those pin hole could be inversion domain. Futher study is going. Based on electrical, optcial, and surface analysis, the Mg-doped GaN thin film has been successful obtained by MBE. However, the hole concentration of these samples is so low that results in difficulty for Hall and Raman scatting measurement.
2

Photoluminescence of High Quality Epitaxial p-type InN

Song, Young-Wook January 2013 (has links)
Indium nitride (InN) is a group III-V semiconductor that is part of the Al,Ga:N family. It is an infrared bandgap semiconductor with great potential for use in photovoltaic applications. Being an intrinsically n-type material, p-type doping is naturally one of the ongoing hot topics in InN research, which is of interest in the fabrication of pn junctions. Plasma-assisted molecular beam epitaxy (PAMBE) grown Mg doped InN thin film was investigated via systematic optical characterizations. Photoluminescence (PL) measurement has been a key part of the research, exhibiting a wide range of spectral lines between 0.54 and 0.67 eV. In a critical Mg concentration range of 2.6×10¹⁷ and 1.0×10¹⁸ cm⁻³, a strong luminescence line at 0.6 eV has been associated with a Mg-related deep acceptor. Correspondingly, a variable magnetic field Hall (VFH) effect measurement has successfully probed a buried hole-mediated conductivity path underneath a surface electron accumulation layer. This specific doping range also led to a manifestation of a “true” band-to-band transition at 0.67 eV. Such an observation has not previously been reported for InN and in our case this assignment is convincingly supported by the quadratic characteristic of the excitation power law. This established that a rigorous control of Mg flux can sufficiently compensate the background electron concentration of InN via the substitutional incorporation on In sites (Mg_In). However, introduction of donor-like complexes somewhat suppressed this process if too much Mg or even alternative dopants such as Zn and Mn were used. Also distinctively observed was a strongly quenched PL quantum efficiency from heavily doped films, where time-resolved differential transmission (TRDT) measurement showed a biexponential carrier lifetime decay curve owing to the onset of Auger recombination processes. These observations certainly have profound implications for devices and beyond.
3

Electron Injection-induced Effects In Iii-nitrides: Physics And Applications

Burdett, William Charles 01 January 2004 (has links)
This research investigated the effect of electron injection in III-Nitrides. The combination of electron beam induced current and cathodoluminescence measurements was used to understand the impact of electron injection on the minority carrier transport and optical properties. In addition, the application of the electron injection effect in optoelectronic devices was investigated. The impact of electron injection on the minority carrier diffusion length was studied at various temperatures in Mg-doped p-GaN, p-Al[subscript x]Ga[subscript 1-x]N, and p-Al[subscript x]Ga[subscript 1-x] N/GaN superlattices. It was found that Lsubscript n] experienced a multi-fold linear increase and that the rate of change of L[subscript n] decreased exponentially with increasing temperature. The effect was attributed to a temperature-activated release of the electrons, which were trapped by the Mg levels. The activation energies, E[subscript a], for the electron injection effect in the Mg-doped (Al)GaN samples were found to range from 178 to 267 meV, which is close to the thermal ionization energy of the Mg acceptor. The E[subscript a] observed for Al[subscript 0.15]Ga[subscript 0.85]N and Al[subscript 0.2]Ga[subscript 0.8]N was consistent with the deepening of the Mg acceptor level due to the incorporation of Al into the GaN lattice. The E[subscript a] in the homogeneously doped Al[subscript 0.2]Ga[subscript 0.8]N/GaN superlattice indicates that the main contribution to the electron injection effect comes from the capture of injected electrons by the wells (GaN). The electron injection effect was successfully applied to GaN doped with an impurity (Mn) other than Mg. Electron injection into Mn-doped GaN resulted in a multi-fold increase of the L[subscript n] and a pronounced decrease in the band-to-band cathodoluminescence intensity. The E[subscript a] due to the electron injection effect was estimated from temperature-dependent cathodoluminescence measurements to be 360 meV. The decrease in the band-to-band cathodoluminescence is consistent with an increase in L[subscript n] and these results are attributed to an increase in the minority carrier lifetime due to the trapping of injected electrons by the Mn levels. A forward bias was applied to inject electrons into commercially built p-i-n and Schottky barrier photodetectors. Up to an order of magnitude increase in the peak (360 nm) responsivity was observed. The enhanced photoresponse lasted for over four weeks and was attributed to an electron injection-induced increase of L[subscript n] and the lifetime.

Page generated in 0.0381 seconds