• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis hexagonal phase retention in BaTiO3

Lee, Che-chi 26 June 2004 (has links)
Non-stoichiometric barium titanate (BaTiO3) powder of TiO2-excess compositions has been investigated using both reducing sintering and acceptor-doping. Crystalline phases were analysed by XRD. Attention has been paid to the analysis of the corresponding sintered microstructure by adopting scanning and transmission electron microcopy. Reducing sintering was in the low oxygen partial pressure, so as to dominate the oxygen-deficient. According to the defect chemistry, the purpose of acceptor-doping was the same as reducing sintering. We look out for phenomena which may be indicative that oxygen vacancies generated by acceptor-doping and reducing sintering have resulted in the metastable retention of high temperature hexagonal-BaTiO3 to an ambient temperature. In the Mg-doped study investigated the possibility that Mg2+ substitutes on Ti4+ site rather than the Ba2+ site, as expected from the radii. According to the unknown phase was indexed a supercell of MgTiO3, that showed evidence of Mg2+ dissolves in BaTiO3 and occupies the Ba2+ site. To reduce in a hydrogen atmosphere was a high dark conductivity. The Ti3+ content was determined via colorimetry. Because of the defect chemistry led to oxygen-deficient h-BaTiO3, i.e.BaTi1-xTixO3-x/2. The observed volume expansion behavior under Ar-H2 atmosphere demonstrates the possibility of having various microstructures via control of oxygen partial pressure. The transformation matrix described the relation between the two reciprocal lattices of the twinning. Investigation of reciprocal lattices was shown that ordering oxygen deficient on the BaO3 layer in the twin boundary. There was evidence of XRD patterns and surface energy that explained more and more twins in the microstructure via control of the low oxygen partial pressure. According to this theory, lamellae twins were generated by oxygen-deficient. The hexagonal phase might be also expressed as the cubic BaTiO3 containing twin boundary at BaO3 planes every three layers. That demonstrates the possibility of hexagonal phase retention in BaTiO3 was oxygen vacancies.
2

Femtosecond near-IR optical parametric oscillator based on periodically poled 5-mol. % MgO-doped lithium niobate

Wu, Ping-Tsung 04 September 2006 (has links)
The synchronously pumped femtosecond optical parametric oscillator (OPO) based on was periodically poled 5-mol.% MgO-doped lithuium niobate was demonstrated by means of non-critical quasi phase matching. The femtosecond OPO is cable of operating at room temperature and shows no photorefractive damage. The spectrum can be tuned by varying the cavity length up to 70 £gm, the temperature of the nonlinear crystal from room temperature to 150¢J, and the grating periods. The cavity was designed to resonate at 1.33 £gm with bandwidth of 100 nm. The maximum output intensity of the signal is 43 mW with TEM00 mode. The signal slope efficiency is 11%. The spectrum range of the idler is tunable from 1.8 to 2.8 £gm.
3

Periodic Domain Inversion of MgO-Doped Lithium Niobate By Corona Discharge Method

Markle, Jon January 2006 (has links)
<p>In this work a flow stabilized corona torch plasma was used for periodic domain inversion of MgO-doped lithium niobate with 19 .1 μm periodic gratings. The effective non-linear coefficient (derr) achieved through corona discharge poling was 17.5 pm/V, which agrees well with theoretical value of 16~19 pm/V. By analysing the second harmonic generation (SHG) tuning curves, the grating uniformity over the 10 mm grating was investigated. The 0.6 run bandwidth of the SHG tuning at full width half maximum (FWHM) corresponded exactly to the theoretical value. The agreement between experimental data and theoretical results imply that the obtained periodically poled lithium niobate (PPLN) has high quality. By controlling temperature in the range of 20 °C to 120 °C tunability of SHG wavelength was demonstrated between 782 run and 788 run.</p> <p>Discharge characteristics of the corona were studied using a floating potential double probe and optical emission spectroscopy. Using the double probe the distribution of ion density downstream of the corona torch was observed. The maximum ion density of 2 x 1018 (ions/cm3) was achieved 2 mm below the discharge electrode. Measurement of the optical emission spectrum was used to determine the vibrational ion temperature to be 3953 K. The observed spectrum consisted entirely of the second positive band of nitrogen.</p> <p>The applied voltage range of 9 kV to 10 kV was observed to be optimum for domain growth in periodic poling. Poling uniformity of the 12 mm grating was optimized for an electrode to crystal spacing of 13 mm. Increasing the crystal temperature during poling reduces the required coercive field for domain inversion. This reduces the required applied voltage and also reduces the required poling time by increasing the domain-switching rate. Proton exchange pretreatment of the (+z) crystal surface prior to poling has been demonstrated to control domain spreading, however future efforts are required to ensure a more reliable nucleation condition. Both high vacuum and spin coated photoresist function to increase electrical discrimination of anode grating and provide an improved nucleation condition for periodic poling of MgO-doped lithium niobate. Poling uniformity of the 12 mm grating was optimised for an electrode to crystal spacing of 13mm.</p> / Thesis / Master of Applied Science (MASc)

Page generated in 0.0334 seconds