Spelling suggestions: "subject:"ici"" "subject:"fici""
1 |
Macromolecular Matchmaking : Mechanisms and Biology of Bacterial Small RNAsHolmqvist, Erik January 2012 (has links)
Cells sense the properties of the surrounding environment and convert this information into changes in gene expression. Bacteria are, in contrast to many multi-cellular eukaryotes, remarkable in their ability to cope with rapid environmental changes and to endure harsh and extreme milieus. Previously, control of gene expression was thought to be carried out exclusively by proteins. However, it is now clear that small regulatory RNAs (sRNA) also carry out gene regulatory functions. Bacteria such as E. coli harbor a large class of sRNAs that bind to mRNAs to alter translation and/or mRNA stability. By identifying mRNAs that are targeted by sRNAs, my studies have broadened the understanding of the mechanisms that underlie sRNA-dependent gene regulation, and have shed light on the impact that this type of regulation has on bacterial physiology. Control of gene expression often relies on the interplay of many regulators. This interplay is exemplified by our discovery of mutual regulation between the sRNA MicF and the globally acting transcription factor Lrp. Through double negative feedback, these two regulators respond to nutrient availability in the environment which results in reprogramming of downstream gene expression. We have also shown that both the transcription factor CsgD, and the anti-sigma factor FlgM, are repressed by the two sRNAs OmrA and OmrB, suggesting that these sRNAs are important players in the complex regulation that allow bacteria to switch between motility and sessility. Bacterial populations of genetically identical individuals show phenotypic variations when switching to the sessile state due to bistability in gene expression. While bistability has previously been demonstrated to arise from stochastic fluctuations in transcription, our results suggest that bistability possibly may arise from sRNA-dependent regulatory events also on the post-transcriptional level.
|
2 |
Small RNA-mediated Regulation of Gene Expression in Escherichia coliUnoson, Cecilia January 2010 (has links)
Non-coding RNAs are highly abundant regulators of gene expression in all kingdoms of life that often play important roles in vital cellular functions. In bacteria, small regulatory RNAs (sRNAs) usually act post-transcriptionally by regulating mRNAs through base pairing within ribosome binding sites (RBS), thereby inhibiting translation initiation. tisB encodes a toxin, TisB, whose synthesis is controlled by the sRNA IstR-1. Intriguingly, IstR-1 base pairs far upstream of the RBS but nevertheless inhibits translation initiation. The tisB mRNA is unusual in that ribosomes cannot access the RBS directly, but instead need an unstructured upstream region. This is precisely where IstR-1 exerts its inhibitory effect. We propose this region to serve as a ribosome loading site (standby site) which permits ribosomes to overcome the obstacle of inhibitory RBS-containing structures. Sequence-independent ribosome binding to the standby site allows for efficient relocation to the RBS structure when it is transiently open. Thus, standby sites are translation enhancer elements. I also characterized TisB-mediated toxicity. The hydrophobic protein TisB is targeted to the inner membrane and causes damage. This decreases the intracellular ATP concentration and entails decreased replication, transcription and translation rates. It is likely that this toxin is involved in multidrug tolerance under certain conditions. We identified the sRNA MicF as a negative regulator of lrp expression. Lrp is a global transcription factor that controls genes involved in amino acid metabolism and transport of small molecules. Interestingly, Lrp also downregulates MicF. Thus, this study established that the mutual downregulation of MicF/Lrp creates a positive feedback loop which gives a switch-like behavior important for fast adaptations.
|
Page generated in 0.0328 seconds