• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calculations of Light-Matter Interactions in Dielectric Media Using Microscopic Particle-in-Cell Technique

Hoogkamp, Eric January 2016 (has links)
The interaction between light and matter is usually modeled by approximating the material under study as a continuum. The magnitude of the material's polarization in the presence of an electric field is dependent on the atomic response via the well-known Lorentz-Lorentz relation. These continuous medium models can be used to see many light-matter effects including non-linear interactions.The goal of this thesis is to adapt and use novel computational methods to explore the microscopic origins of non-linear optical effects. The Microscopic Particle-in-Cell (MicPIC) technique, initially developed to model the laser-driven dynamics of strongly-coupled plasmas, is extended to study the non-linear scattering of light by a collection of dipoles in the atomic limit. In this thesis, we find that in one-dimensional chains of individual scatterers there are apparent boundary effects and the generation of even harmonics that do not appear in continuous media calculations.These finite structures of dipoles also exhibit a lower average response from each at odd harmonic frequencies of the driving light frequency.These results are in contradiction with the commonly used Lorentz-Lorenz relation, derived for a dipole in a 3D material with infinite volume, and suggest that MicPIC is more appropriate for calculations of nanostructures than models using the Lorentz-Lorenz relation.

Page generated in 0.0109 seconds