• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Viscous Vortex Method Simulations of Stall Flutter of an Isolated Airfoil at Low Reynolds Numbers

Kumar, Vijay January 2013 (has links) (PDF)
The flow field and forces on an isolated oscillating NACA 0012 airfoil in a uniform flow is studied using viscous vortex particle method. The simulations are carried out at very low chord (c) based Reynolds number (Re=1000), motivated by the current interest in development of Micro Air Vehicles (MAV). The airfoil is forced to oscillate in both heave and pitch at different normalized oscillation frequencies (f), which is represented by the non-dimensional reduced frequency fc/U).( From the unsteady loading on the airfoil, the net energy transfer to the airfoil is calculated to determine the propensity for the airfoil to undergo self-induced oscillations or flutter at these very low Reynolds numbers. The simulations are carried out using a viscous vortex particle method that utilizes discrete vortex elements to represent the vorticity in the flow field. After validation of the code against test cases in the literature, simulations are first carried out for the stationary airfoil at different angles of attack, which shows the stall characteristics of the airfoil at this very low Reynolds numbers. For the airfoil oscillating in heave, the airfoil is forced to oscillate at different reduced frequencies at a large angle of attack in the stall regime. The unsteady loading on the blade is obtained at different reduced frequencies. This is used to calculate the net energy transfer to the airfoil from the flow, which is found to be negative in all cases studied. This implies that stall flutter or self-induced oscillations are not possible under the given heave conditions. The wake vorticity dynamics is presented for the different reduced frequencies, which show that the leading edge vortex dynamics is progressively more complex as the reduced frequency is increased from small values. For the airfoil oscillating in pitch, the airfoil is forced to oscillate about a large mean angle of attack corresponding to the stall regime. The unsteady moment on the blade is obtained at different reduced frequencies, and this is used to calculate the net energy transfer to the airfoil from the flow, which is found to be positive in all cases studied. This implies that stall flutter or self-induced oscillations are possible in the pitch mode, unlike in the heave case. The wake vorticity dynamics for this case is found to be relatively simple compared to that in heave. The results of the present simulations are broadly in agreement with earlier stall flutter studies at higher Reynolds numbers that show that stall flutter does not occur in the heave mode, but can occur in the pitch mode. The main difference in the present very low Reynolds number case appears to be the broader extent of the excitation region in the pitch mode compared to large Re cases studied earlier. region in the pitch mode compared to large Re cases studied earlier.
2

Canonical Decomposition of Wing Kinematics for a Straight Flying Insectivorous Bat

Fan, Xiaozhou 22 January 2018 (has links)
Bats are some of the most agile flyers in nature. Their wings are highly articulated which affords them very fine control over shape and form. This thesis investigates the flight of Hipposideros Pratti. The flight pattern studied is nominally level and straight. Measured wing kinematics are used to describe the wing motion. It is shown that Proper Orthogonal Decomposition (POD) can be used to effectively to filter the measured kinematics to eliminate outliers which usually manifest as low energy higher POD modes, but which can impact the stability of aerodynamic simulations. Through aerodynamic simulations it is established that the first two modes from the POD analysis recover 62% of the lift, and reflect a drag force instead of thrust, whereas the first three modes recover 77% of the thrust and even more lift than the native kinematics. This demonstrates that mode 2, which features a combination of spanwise twisting (pitching) and chordwise cambering, is critical for the generation of lift, and more so for thrust. Based on these inferences, it is concluded that the first 7 modes are sufficient to represent the full native kinematics. The aerodynamic simulations are conducted using the immersed boundary method on 128 processors. They utilize a grid of 31 million cells and the bat wing is represented by about 50000 surface elements. The movement of the immersed wing surface is defined by piecewise cubic splines that describe the time evolution of each control point on the wing. The major contribution of this work is the decomposition of the native kinematics into canonical flapping wing physical descriptors comprising of the flapping motion, stroke-plane deviation, pitching motion, chordwise, and spanwise cambering. It is shown that the pitching mode harvests a Leading Edge Vortex (LEV) during the upstroke to produce thrust. It also stabilizes the LEV during downstroke, as a result, larger lift and thrust production is observed. Chordwise cambering mode allows the LEV to glide over and cover a large portion of the wing thus contributing to more lift while the spanwise cambering mode mitigates the intensification of LEV during the upstroke by relative rotation of outer part of the wing ( hand wing ) with respect to the inner part of the wing ( arm wing). While this thesis concerns itself with near straight-level flight, the proposed decomposition can be applied to any complex flight maneuver and provide a basis for unified comparison not only over different bat flight regimes but also across other flying insects and birds. / MS / Bats are some of the most agile flyers in nature. Their wings are highly articulated which affords them very fine control over shape and form. This thesis investigates the flight of Hipposideros Pratti. The flight pattern studied is nominally level and straight. Measured wing kinematics are used to describe the wing motion. The central motivation of the thesis is to characterize how the bat uses its wings to generate lift to counter gravity and thrust to move forward against drag forces. A mathematical filter based on Proper Orthogonal Decomposition (POD) is used to filter the measured wing motion to eliminate high frequency noise in the data but at the same time including including the important motions which produce lift and thrust. The filtered native kinematics is decomposed into flapping wing motions comprising of flapping mode, stroke-plane deviation, pitching motion, chordwise, and spanwise cambering. It is shown that the pitching mode harvests the low pressure region created by the Leading Edge Vortex (LEV) during the upstroke to produce thrust. It also stabilizes the LEV during the downstroke, as a result, larger lift and thrust production is observed. Chordwise cambering mode allows the LEV to glide over and cover a large portion of the wing thus contributing to more lift, while the spanwise cambering mode mitigates the intensification of LEV during the upstroke by relative rotation of the outer part of the wing (hand wing) with respect to the inner part of the wing (arm wing). While this thesis concerns itself with near straight-level flight, the proposed decomposition can be applied to any complex flight maneuver and provide a basis for unified comparison not only over different bat flight regimes but also across other flying insects and birds.

Page generated in 0.0703 seconds