• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Small Scale Cooling of Mini-Channels using Added Surface Defects

Tullius, Jami 16 September 2013 (has links)
Advancements in electronic performance lead to a decrease in device size and an increase in power density. Because of these changes, current cooling mechanisms for electronic devices are beginning to be ineffective. Microchannels, with their large heat transfer surface area to volume ratio, cooled with either gas or liquid coolant, have shown some potential in adequately maintaining a safe surface temperature. By modifying the walls of the microchannel with fins, the cooling performance can be improved. Using computational fluid dynamics software, microfins placed in a staggered array on the bottom surface of a rectangular minichannel are modeled in order to optimize microstructure geometry and maximize heat transfer dissipation through convection from a heated surface. Fin geometry, dimensions, spacing, height, and material are analyzed. Correlations describing the Nusselt number and the Darcy friction factor are obtained and compared to recent studies. These correlations only apply to short fins in the laminar regime. Triangular fins with larger fin height, smaller fin width, and spacing double the fin width maximizes the number of fins in each row and yields better thermal performance. Once the effects of microfins were found, an experiment with multi-walled carbon nanotubes (MWNTs) grown on the surface were tested using both water and Al2O3/H2O nanofluid as the working medium. Minichannel devices containing two different MWNT structures – one fully coated surface of MWNTs and the other with a circular staggered fin array of MWNTs - were tested and compared to a minichannel device with no MWNTs. It was observed that the sedimentation of Al2O3 nanoparticles on a channel surface with no MWNTs increases the surface roughness and the thermal performance. Finally, using the lattice Boltzmann method, a two dimensional channel with suspended particles is modeled in order to get an accurate characterization of the fluid/particle motion in nanofluid. Using the analysis based on an ideal fin, approximate results for nanofluids with increase surface roughness was obtained. Microchannels have proven to be effective cooling systems and understanding how to achieve the maximum performance is vital for the innovation of electronics. Implementation of these modified channel devices can allow for longer lasting electronic systems.
2

Multi-Objective Analysis and Optimization of Integrated Cooling in Micro-Electronics With Hot Spots

Reddy, Sohail R. 12 June 2015 (has links)
With the demand of computing power from electronic chips on a constant rise, innovative methods are needed for effective and efficient thermal management. Forced convection cooling through an array of micro pin-fins acts not only as a heat sink, but also allows for the electrical interconnection between stacked layers of integrated circuits. This work performs a multi-objective optimization of three shapes of pin-fins to maximize the efficiency of this cooling system. An inverse design approach that allows for the design of cooling configurations without prior knowledge of thermal mapping was proposed and validated. The optimization study showed that pin-fin configurations are capable of containing heat flux levels of next generation electronic chips. It was also shown that even under these high heat fluxes the structural integrity is not compromised. The inverse approach showed that configurations exist that are capable of cooling heat fluxes beyond those of next generation chips. Thin film heat spreaders made of diamond and graphene nano-platelets were also investigated and showed that further reduction in maximum temperature, increase in temperature uniformity and reduction in thermal stresses are possible.

Page generated in 0.0471 seconds