• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of the Grinding Process for the Optical-Fiber Endface with Double-Variable Curvatures

Chen, Jun-Hong 02 September 2010 (has links)
Mechanical grinding process is the most popular way to fabricate the fiber micro lenses, although there are some other methods, such as chemical etching, laser machining and focused ion beam micro-cutting. Mechanical grinding has its uniqueness in grinding Conical-Wedge-Shaped Fiber Endface, fiber endface with polygon-cone-shape, and fiber endface with double-variable curvatures. The double-variable curvatures fiber endface polisher, designed and manufactured by Mechanism Design Lab of NSYSU, is employed in this study. The normal force of the fiber endface is derived firstly and then the experimental parameters and data are substituted into the material removal rate (M.R.R.) formula to obtain M.R.R. and the Preston¡¦s constant K. The process parameters of the feed rate and polishing time on the fabrication of the fiber endface are analyzed. The polisher is calibrated and adjusted to improve the precision of the optical-fiber endface. A fiber endface with double-variable curvature is successfully fabricated in a single grinding process by properly controlling the fiber rotation angle, inclining angle, and the distant between the endface and the grinding film simultaneously. The grinding process developed in this study can be applied for fabricating optical fiber lenses in fiber optics communication as well as different types of micro probes, and micro spectroscopefors in other applications.

Page generated in 0.0643 seconds