1 |
Etude des caractéristiques électro-optiques de micro-LED GaN pour application aux micro-écrans haute-luminance / Study of electro-optical characteristics of GaN micro-LEDs for high-brightness-micro-displaysOlivier, François 15 March 2018 (has links)
Le domaine des écrans est en pleine mutation. De nouvelles technologies d’écrans (principalement LCD et OLED) ont remplacé l’écran à tube cathodique du XXème siècle et ouvrent la voie vers de nouvelles fonctionnalités (écran 3D, flexible, transparent). Depuis quelques années, un genre particulier d’écran fait l’objet de nombreuses recherches, notamment pour adresser de nouveaux marchés tels que la réalité augmentée : les micro-écrans. Pour cela, les contraintes technologiques sont fortes. L’écran doit être miniature (quelques millimètres de diagonale) tout en permettant une qualité d’image semblable aux écrans traditionnels. Il doit aussi être compact, économe en énergie et très lumineux. Une nouvelle technologie d’écran est à l’étude depuis quelques années et doit permettre d’atteindre ses spécifications. Il s’agit des micro-écrans LED, constitués d’un réseau de LED micrométriques, dans lequel chaque diode constitue un pixel de l’image. L’objectif de cette thèse est d’étudier les spécificités des matrices de LED en nitrure de gallium (GaN) en vue de leur utilisation dans des micro-écrans.Les recherches menées au cours de cette thèse portent sur trois axes d’étude. Le premier concerne l’optimisation du rendement à travers l’étude du procédé de matriçage d’une épitaxie LED. L’amélioration de la métallisation P et de l’intégrité électrique du P-GaN a permis d’augmenter le rendement d’un facteur 10 sur les micro-LED. Le deuxième axe de travail concerne l’étude des effets de taille. La réduction de la taille des LED entraine une forte baisse du rendement maximum. Les études menées ont permis l’attribuer principalement à des recombinaisons non-radiatives sur les bords de pixel. Le troisième axe de recherche porte sur l’étude des micro-LED en tant que réseau bidimensionnel permettant la formation d’images. Les principales sources d’inhomogénéité et de dispersion ont été étudiées. Des solutions ont été proposées pour éliminer le cross-talk optique et améliorer l’extraction lumineuse, principal frein au rendement de nos micro-LED. Enfin, des micro-écrans LED fonctionnels, bleus et verts, à l’état de l’art mondial ont été obtenus et caractérisés au cours de cette thèse / The display industry is facing a fast transformation. New technologies (mainly LCD and OLED) have faded-out the cathode ray tube of the 20th century and lead to new applications (3D, flexible and transparent displays). A very particular type of display has recently emerged to address new markets, such as augmented reality: micro-displays. They can be defined as having a diagonal of around 1 inch or less. One important goal of these micro-displays is to deliver the same image quality as conventional, larger-size displays. Strong challenges arise in terms of definition, compactness, consumption and brightness. To address these, LED micro-displays are currently being studied. In a LED micro-display, a 2D-array of micro-LEDs is fabricated, where each LED acts as a single pixel of a whole image. The main objective of this thesis work is to study the specifics of Gallium Nitride (GaN) micro-LEDs arrays for micro-display applications.Our investigations have been carried out focusing on three major areas of study. Increasing LED efficiency through the study of our fabrication process was the first goal. By improving P metal and enhancing P-GaN electrical performances, we were able to increase efficiency of micro-LED by a factor of 10.The influence of size-reduction on the performances of LEDs have then been thoroughly investigated. As LED size decreases, its maximum efficiency drops. Non-radiative recombinations occurring at the edges of the LED were found to be the main origin. We have then studied LEDs, not as a single diode, but as a dense 2D array of micro-LEDs allowing image display, and optical and electrical spread have been investigated. Furthermore, optical cross-talk has been studied and fabrication was changed to address this issue. New structures have also been suggested to improve light extraction efficiency, which is one of the main hindrance towards high-efficiency micro-LEDs. Finally, state-of-the-art, blue and green, active matrix micro-LED displays have been obtained and characterized during the course of this thesis work.
|
2 |
Ultraviolet micro light-emitting diode and color-conversion for white-light communicationLu, Hang 29 November 2022 (has links)
Visible-light communication (VLC) has several advantages over the commonly used radio frequency (RF) spectrum, including high bandwidth and low crosstalk. These features have become of more significance, especially as the proliferation of wireless devices increases and causes spectrum crowding.
The white light in VLC systems is typically obtained from blue/violet light-emitting diodes (LEDs) and phosphors partially converting blue light into longer wavelength colors spanning the visible-light band. One phosphor that is frequently used is cerium-doped yttrium aluminum garnet (YAG). However, YAG suffers from a low color-rendering index (CRI) and high correlated color temperature (CCT). Lead halide perovskites provide an alternative to YAG and have been extensively utilized for optoelectronic devices owing to their tunable bandgap and high photoluminescence quantum yield (PLQY). However, their drawbacks, e.g., lead toxicity and instability, hinder their widespread application. Herein, in order to take advantage of a high-performance lead-free tin-based halide perovskite phosphor that has a high absolute PLQY of near unity and a wide spectral emission ranging from 500 to 700 nm, we fabricated ultraviolet (UV) micro light-emitting diodes (micro-LEDs) with a peak wavelength at 365 nm to match the peak of the photoluminescence excitation (PLE) spectra of the material to obtain strong yellow-spectrum emission. Together with a blue LED, white light was obtained with a CRI of 84.9 and 4115-K CCT. Despite the long PL lifetime of the perovskite material, which is in the order of μs, a net data rate of 1.5 Mb/s was achieved using orthogonal frequency-division multiplexing (OFDM) with adaptive bit and power loading to take advantage of the exceptionally high PLQY of the phosphor to improve the data throughput of the VLC system using higher modulation orders.
Furthermore, through improvements to the nanostructure of lead-free tin-based halide perovskite phosphor and the use of excitation sources with a higher power, the data rate is expected to be even higher. The lead-free nature of this material, along with its wide spectrum and high conversion efficiency, makes it a promising alternative to conventional toxic perovskite-based phosphors. As the first demonstration of VLC links using lead-free perovskite, this study paves the way for safer, more sustainable VLC systems.
|
Page generated in 0.0511 seconds