Spelling suggestions: "subject:"microthermocouples"" "subject:"microthermocouple""
1 |
Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature SensorsSathyamurthi, Vijaykumar 2009 December 1900 (has links)
The objective of this investigation is to measure and analyze surface temperature fluctuations in pool boiling. The surface temperature fluctuations were recorded on silicon surfaces with and without multi-walled carbon nanotubes (MWCNT). Novel
Thin Film Thermocouples (TFT) are micro-fabricated on test substrates to measure surface temperatures. A dielectric liquid refrigerant (PF-5060) is used as test fluid. Both nucleate and lm boiling regimes are investigated for the silicon test substrates. Dynamics of nucleate boiling is investigated on the CNT coated substrates. High frequency temperature fluctuation data is analyzed for the presence of determinism using non-linear time series analysis techniques in TISEAN(copyright) software. The impact of subcooling and micro/nano-scale surface texturing using MWCNT coatings on the dynamics of pool boiling is assessed. Dynamic invariants such as correlation
dimensions and Lyapunov spectrum are evaluated for the reconstructed attractor. A non-linear noise reduction scheme is employed to reduce the level of noise in the data. Previous investigations in pool boiling chaos, reported in literature were based on temperature measurements underneath the test surface consisting of single or few active nucleation sites. Previous studies have indicated the presence of low-dimensional
behavior in nucleate boiling and high-dimensional behavior in CHF and film boiling. Currently, there is no study detailing the effects of multiple nucleation sites, subcooling and surface texturing on pool boiling dynamics. The investigation comprises of four parts: i) in situ micro-machining of Chromelalumel
(K-type) TFT, ii) calibration of these sensors, iii) utilizing these sensors in pool boiling experiments iv) analysis of these fluctuations using techniques of nonlinear time series analysis. Ten TFT are fabricated on a rectangular silicon surface
within an area of ~ 3.00 cm x 3.00 cm. The sensing junctions of the TFT measure 50 mm in width and 250 nm in depth. Surface temperature fluctuations of the order of i) 0.65-0.93 degrees C are observed near ONB ii) 2.3-6.5 degrees C in FDNB iii) 2.60-5.00 degrees C at CHF and iv) 2.3-3.5 degrees C in film boiling. Investigations show the possible presence of chaotic dynamics near CHF and in film-boiling in saturated and subcooled pool boiling. Fully-developed nucleate boiling (FDNB) is chaotic. No clear assessment of the dynamics could be made in the onset of nucleate boiling (ONB) and partial nucleate boiling (PNB) regimes due to the effects of noise. However, the frequency spectra in these regimes appear to have two
independent frequencies and their integral combinations indicating a possible quasiperiodic bifurcation route to chaos. The dimensionality in FDNB, at CHF and in film-boiling is lower in saturated pool boiling as compared to values in corresponding
regimes in subcooled pool boiling. Surface temperature fluctuations can damage electronic components and need
to be carefully controlled. Understanding the nature of these fluctuations will aid in deciding the modeling approach for surface temperature transients on an electronic chip. Subsequently, the TFT signals can be employed in a suitable feedback control loop to prevent the occurrence of hotspots.
|
2 |
Etude du transfert thermique local et identification des structures d'écoulement lors de la condensation dans un microcanal en silicium.Odaymet, Ahmad 14 December 2010 (has links) (PDF)
L'utilisation des micro-carnaux a l'avantage de contribuer à une augmentation significative de la compacité des échangeurs de chaleur et à une amélioration des performances énergétiques des systèmes. L'étude des régimes d'écoulements diphasiques et des transferts thermiques locaux représentent un véritable verrou scientifique vu son effet sur la durée de vie et les performances énergétiques des systèmes énergétiques tels que les piles à combustible et les refroidisseurs miniatures. Malheureusement, l'aspect hydrodynamique de l'écoulement et du transfert thermique (mesure des densités de flux thermique et des coefficients d'échange thermique locaux) dans un seul micro-canal demeure toujours mal connu. Dans le cadre de ce travail de thèse, nous nous sommes intéressés à étudier les différents phénomènes se produisant lors de la condensation dans un seul micro-canal en repérant les différentes instabilités hydrodynamiques et en analysant les différents mécanismes physiques influençant les coefficients d'échange thermique. A cette fin, nous avons développé un banc d'essais pour tester la condensation en micro-canaux et dans lequel le micro-canal est instrumenté par des micro-thermocouples de 20 µm de diamètre. Cet aspect micro-instrumentation représente une véritable originalité de ce travail de thèse car il permet de mesurer les températures de surface locales tout au long du micro-canal. Une camera rapide est utilisée pour la visualisation des structures des écoulements se produisant en condensation dans le micro-canal. Une procédure de traitement d'images est développée pour caractériser les différents paramètres de l'écoulement diphasique dans le micro-canal, à savoir : taille des bulles, parcours des bulles, forme du ménisque, vitesse et fréquence des bulles, etc. L'influence de ces paramètres sur les structures des écoulements et sur l'intensification des transferts est étudiée. On montre que la présence des écoulements instationnaires et cycliques qui changent de structure durant chaque période. La variation de la température pour chaque période est reliée à la structure de l'écoulement en condensation dans le micro-canal. On a aussi identifié des écoulements développés de différentes structures. Nous avons aussi mis en évidence que la densité du flux thermique local dépend non seulement du flux massique et du taux de condensation mais également de la structure de l'écoulement en condensation. Enfin, nos résultats donnent une démonstration sur l'influence de la micro-structuration de surface sur la structure d'écoulement lors de la condensation dans un micro-canal, et fournissent de nouvelles méthodes pour l'amélioration de l'intensification thermique.
|
Page generated in 0.054 seconds