• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MicroRNA-145-loaded poly(lactic-co-glycolic acid) nanoparticles attenuate venous intimal hyperplasia in a rabbit model / microRNA-145封入ポリ乳酸グリコール酸共重合体ナノ粒子はウサギモデルにおいて静脈内膜肥厚を抑制する

Nishio, Hiroomi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21638号 / 医博第4444号 / 新制||医||1034(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 木村 剛, 教授 浅野 雅秀, 教授 山下 潤 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Role of microRNA-145 in DNA damage signalling and senescence in vascular smooth muscle cells of Type 2 diabetic patients

Hemmings, K.E., Riches-Suman, Kirsten, Bailey, M.A., O'Regan, D.J., Turner, N.A., Porter, K.E. 05 May 2021 (has links)
Yes / Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38a. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38a signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.

Page generated in 0.0256 seconds