• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of two different indentation techniques in studying the in-situ viscoelasticity behavior of liquid crystals

Soon, C.F., Tee, K.S., Youseffi, Mansour, Denyer, Morgan C.T. 09 1900 (has links)
Yes / Liquid crystal is a new emerging biomaterial. The physical property of liquid crystal plays a role in supporting the adhesion of cells. Nano and microball indentation techniques were applied to determine the elastic modulus or viscoelasticity of the cholesteryl ester liquid crystals in the culture media. Nano-indentation results (108 ± 19.78 kPa, N = 20) agreed well with the microball indentation (110 ± 19.95 kPa, N = 60) for the liquid crystal samples incubated for 24 hours at 37o C, respectively. However, nanoindentation could not measure the modulus of the liquid crystal (LC) incubated more than 24 hours. This is due to the decreased viscosity of the liquid crystal after immersion in the cell culture media for more than 24 hours. Alternatively, microball indentation was used and the elastic modulus of the LC immersed for 48 hours was found to decrease to 55 ± 9.99 kPa (N = 60). The microball indentation indicated that the LC did not creep after 40 seconds of indentation. However, the elastic modulus of the LC was no longer measurable after 72 hours of incubation due to the lost of elasticity. Microball indentation seemed to be a reliable technique in determining the elastic moduli of the cholesteryl ester liquid crystals. / Science Fund Vot. No. S024 or Project No. 02- 01-13-SF0104 and FRGS Vot. No. 1482 awarded by Malaysia Ministry of Education

Page generated in 0.1159 seconds