Spelling suggestions: "subject:"amicrobial enzymatic activity"" "subject:"kmicrobial enzymatic activity""
1 |
The use of different ecosystem components as indicators of ecosystem development during platinum mine tailings rehabilitation / Johanna Martina (Juanita) RossouwRossouw, Johanna Martina January 2005 (has links)
Platinum mining activities contribute substantially to South Africa's economy since it
exceeded gold as economical contributor in 2001. Mining activities contribute to large
amounts of waste production in the form of tailings and rock waste, deposited in the
surrounding environment of the mine premises. Mining companies are held
responsible for damages caused to the surrounding environment. These companies are
required to introduce the cost of ecological rehabilitation in their operation costs as
well as compile an environmental management plan. Numerous attempts to
rehabilitate mine waste have proven unsuccessful. New and improved rehabilitation
techniques are required to facilitate in the rehabilitation of these mine spoils.
Woodchip-vermicompost produced from platinum mining wastes (woodchips and
sewage sludge) was used as an alternative amendment to inorganic fertilisers during
the rehabilitation of platinum mine tailings. The effectiveness of the woodchip-vermicompost
as an alternative amendment during the platinum mine tailings
rehabilitation were monitored using different ecosystem components. A natural veldt
in the vicinity of the mine area was randomly selected to serve as a reference site.
These ecosystem components selected have previously been shown to be effective as
indicators of ecosystem quality. The components selected for this study includes the
use of microbial enzymatic activity, microbial community structure, nematode trophic
structures, and other mesofaunal groups such as micro-arthropods. The physical and
chemical properties of the platinum mine tailings and reference area as well as the
vegetation cover of the platinum mine tailings were determined. Statistical and
multivariate analyses were use to determine the correlation between the dependent
microbial components and dominate independent chemical properties. Nematode
trophic structure, Maturity Index, and Plant-Parasitic nematode Index were used to
compare the two rehabilitation techniques in terms of nematodes as indicators. Microarthropods
family structures were used to compare the two amendments in terms of
diversity and abundance. Enzymatic activity was positively affected by the addition of
woodchip-vermicompost, than in the sites treated with inorganic fertilisers. The
microbial community structure showed no statistically significant (p < 0.05)
differences between the two amendments. A higher abundance of nematodes
especially plant-parasitic nematodes and bacterivorous nematodes were observed in the woodchip-vermicompost sites than in the inorganic fertilised sites. According to
the Maturity Index, both amendments became more enriched during the study period,
while the Plant-Parasitic nematode Index showed that the carrying capacity for plantparasitic
nematodes on the woodchip-vermicompost sites increased while it decreased
in the inorganic fertilised sites, which can be related to the decrease in vegetation
cover on the inorganic fertilised sites. Both coloniser (Prostigmata) and persister
(Cryptostigmata and Mesostigmata) groups of the micro-arthropods, as well as a
higher diversity of micro-arthropods, were present on the woodchip-vermicompost
sites whereas the inorganic fertilised sites showed only the presence of colonisers,
with a decrease in diversity and abundance of micro-arthropods over the study. The
colonisation of micro-arthropods may have been affected by the addition of
woodchip-vermicompost and vegetation cover, which contribute to the establishment
of suitable microhabitats for these soil biota. By intercorrelating the results, it may be
concluded that the addition of woodchip-vermicompost may be an essential part of the
rehabilitation process, by contributing to soil organic material to the ecosystem
system, which may improve the recolonisation of soil biota and ecosystem processes.
However further studies need to be conducted in order to determine the long-term
sustainability of the woodchip-vermicompost in providing organic material and
sustaining the ecosystem processes. The study also showed the necessity to integrate
various ecosystem components when evaluating ecosystem development due to the
unique role each component plays and the impact it may have on other components. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2006.
|
2 |
The use of different ecosystem components as indicators of ecosystem development during platinum mine tailings rehabilitation / Juanita RossouwRossouw, Johanna Martina January 2005 (has links)
Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2006.
|
3 |
The use of different ecosystem components as indicators of ecosystem development during platinum mine tailings rehabilitation / Johanna Martina (Juanita) RossouwRossouw, Johanna Martina January 2005 (has links)
Platinum mining activities contribute substantially to South Africa's economy since it
exceeded gold as economical contributor in 2001. Mining activities contribute to large
amounts of waste production in the form of tailings and rock waste, deposited in the
surrounding environment of the mine premises. Mining companies are held
responsible for damages caused to the surrounding environment. These companies are
required to introduce the cost of ecological rehabilitation in their operation costs as
well as compile an environmental management plan. Numerous attempts to
rehabilitate mine waste have proven unsuccessful. New and improved rehabilitation
techniques are required to facilitate in the rehabilitation of these mine spoils.
Woodchip-vermicompost produced from platinum mining wastes (woodchips and
sewage sludge) was used as an alternative amendment to inorganic fertilisers during
the rehabilitation of platinum mine tailings. The effectiveness of the woodchip-vermicompost
as an alternative amendment during the platinum mine tailings
rehabilitation were monitored using different ecosystem components. A natural veldt
in the vicinity of the mine area was randomly selected to serve as a reference site.
These ecosystem components selected have previously been shown to be effective as
indicators of ecosystem quality. The components selected for this study includes the
use of microbial enzymatic activity, microbial community structure, nematode trophic
structures, and other mesofaunal groups such as micro-arthropods. The physical and
chemical properties of the platinum mine tailings and reference area as well as the
vegetation cover of the platinum mine tailings were determined. Statistical and
multivariate analyses were use to determine the correlation between the dependent
microbial components and dominate independent chemical properties. Nematode
trophic structure, Maturity Index, and Plant-Parasitic nematode Index were used to
compare the two rehabilitation techniques in terms of nematodes as indicators. Microarthropods
family structures were used to compare the two amendments in terms of
diversity and abundance. Enzymatic activity was positively affected by the addition of
woodchip-vermicompost, than in the sites treated with inorganic fertilisers. The
microbial community structure showed no statistically significant (p < 0.05)
differences between the two amendments. A higher abundance of nematodes
especially plant-parasitic nematodes and bacterivorous nematodes were observed in the woodchip-vermicompost sites than in the inorganic fertilised sites. According to
the Maturity Index, both amendments became more enriched during the study period,
while the Plant-Parasitic nematode Index showed that the carrying capacity for plantparasitic
nematodes on the woodchip-vermicompost sites increased while it decreased
in the inorganic fertilised sites, which can be related to the decrease in vegetation
cover on the inorganic fertilised sites. Both coloniser (Prostigmata) and persister
(Cryptostigmata and Mesostigmata) groups of the micro-arthropods, as well as a
higher diversity of micro-arthropods, were present on the woodchip-vermicompost
sites whereas the inorganic fertilised sites showed only the presence of colonisers,
with a decrease in diversity and abundance of micro-arthropods over the study. The
colonisation of micro-arthropods may have been affected by the addition of
woodchip-vermicompost and vegetation cover, which contribute to the establishment
of suitable microhabitats for these soil biota. By intercorrelating the results, it may be
concluded that the addition of woodchip-vermicompost may be an essential part of the
rehabilitation process, by contributing to soil organic material to the ecosystem
system, which may improve the recolonisation of soil biota and ecosystem processes.
However further studies need to be conducted in order to determine the long-term
sustainability of the woodchip-vermicompost in providing organic material and
sustaining the ecosystem processes. The study also showed the necessity to integrate
various ecosystem components when evaluating ecosystem development due to the
unique role each component plays and the impact it may have on other components. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2006.
|
4 |
Effects of microbial community coalescence in lake water at ice break-off / Effekter av sammansmältning av mikrobsamhällen i sjövatten vid islossningMelhus, Christoffer January 2019 (has links)
The period of ice break-off in spring is a key event for many biogeochemical processes in lakes globallly. The biogeochemical processes occurring at ice break-off have the potential of influencing characteristics of lakes throughout spring and summer, including algal blooms and greenhouse gas emission. This makes it important to study lakes in the period of ice break-off. At ice break-off, soil bacteria from the catchment area usually enter the lake via spring floods and mix with the bacteria already occurring in the lake water. In this study, the effects of mixing soil- and lake microbial communities during ice break-off-like conditions were tested by performing an experiment under controlled conditions in the laboratory. In the experiment, light, microbial community composition and concentration of soil-derived organic matter were manipulated to simulate different conditions associated with ice break-off. The variables investigated were bacterial activity and functionality, measured as cell abundance and enzymatic activity, as well as primary production and concentration of dissolved organic matter. The results showed that a mix of soil and lake microbial communities had enzymatic activity patterns resembling lake communities, and then shifted to being more similar to soil communities. The experiment also showed that degradation of measured dissolved organic matter was not linked to biotic processes, and that the observed decrease was most likely due to photo degradation. Finally, the experiment showed that primary production, here measured as chlorophyll a, was only stimulated by the mixed community with light and added soil dissolved organic matter. The results found in this study are important as they show that microbial communities do alter their function and enzymatic activity based on composition. Furthermore, the result that primary production was only seen in the presence of light, soilderived organic matter and a mixed community of lake and soil bacteria may be seen as an indication that primary producers in lake ecosystems to some extent depend on the inflow of terrestrial microbes and organic matter. It also possible that the coalescence of microbial communities enables the communities to perform tasks they were unable to prior to coalescence (i.e. perform tasks that allows primary production to take place). These results give the basis for further, more detailed studies.
|
Page generated in 0.1187 seconds