Spelling suggestions: "subject:"microelectrode design"" "subject:"microelectrode 1design""
1 |
The optimisation and characterisation of durable microelectrodes for electroanalysis in molten saltBlair, Ewen O. January 2017 (has links)
This work presents microfabricated microelectrodes, capable of quantitative analysis in molten salt (MS). MSs are an electrolytic medium of growing interest, especially in the area of nuclear reprocessing. However, designing sensors for a MS-based nuclear reprocessing system is a challenge, owing to the usually corrosive nature and high operating temperatures (typically 450 - 500◦C) of MS. Microelectrodes are well placed as sensors, with numerous advantages over macro-scale electrodes. As a consequence, there have been previous attempts to utilise microelectrodes inMS. However, these have not been successful and all have suffered disadvantages inherent in traditional microelectrode manufacturing. The microelectrodes presented in this work were produced using standard microfabrication techniques and characterised in MS. An analysis of failure mechanisms guided a systematic study of material combinations. This resulted in a sensor, which is capable of delivering quantifiable electrochemistry in MS. However, the lifetime and yield of the sensor were determined to only be 46% and 1.4 hours respectively. Further investigation of the microelectrode failure mechanisms guided several layout changes to the microelectrode design. By reducing critical area, where defects or pinholes could form, these resulted in improvements in performance. This increased the yield to 65%, while the average lifetime increased up to 45 hours. Test structures were designed to investigate the causes of the continued microelectrode failures and identified shorting between the electrode metal and silicon substrate. This suggests the existence of defects in the underlying insulator are the cause of the 35% of microelectrodes which never functioned. Separate test structures suggested the lifetimes of the microelectrodes could also be improved by removing the need for a metal adhesion layer. Tantalum has been suggested as a replacement electrode metal and a proof of concept study demonstrated the feasibility of employing thin film tantalum as an electrode metal in LKE. Using this technology as a platform, several proof-of-concept microelectrode designs are also presented: liquid microelectrodes, microelectrode arrays, and a nanoelectrode. These are targeted at specific sensing applications, and provide an expanded spectrum of measurements in MS.
|
2 |
ELECTROKINETICALLY ENHANCED SAMPLING AND DETECTION OF BIOPARTICLES WITH SURFACE BASED BIOSENSORSTOMKINS, MATTHEW R. 01 February 2012 (has links)
Established techniques for the detection of pathogens, such as bacteria and viruses, require long timeframes for culturing. State of the art biosensors rely on the diffusion of the target analyte to the sensor surface. AC electric fields can be exploited to enhance the sampling of pathogens and concentrate them at specific locations on the sensor surface, thus overcoming these bottlenecks. AC electrokinetic effects like the dielectrophoretic force and electrothermal flows apply forces on the particle and the bulk fluid, respectively. While dielectrophoresis forces pathogens towards a target location, electrothermal flows circulates the fluid, thus replenishing the local concentration. Numerical simulations and experimental proof of principle demonstrate how AC electrokinetics can be used to collect model bioparticles on an antibody functionalized selective surface from a heterogeneous solution having physiologically relevant conductivity. The presence of parallel channels in a quadrupolar microelectrode design is identified as detrimental during the negative dielectrophoretic collection of bioparticles at the centre of the design while simultaneously providing secondary concentration points. These microelectrodes were incorporated onto the surface of a novel cantilever design for the rapid positive dielectrophoretic collection of Escherichia coli bacteria and enabled the subsequent detection of the bacteria by measuring the shift in the resonance frequency of the cantilever. Finally, a proof of principle setup for a Raman coupled, AC electrokinetically enhanced sampling and detection of viruses is shown where the presence of M13 phages are identified on a selective antibody functionalized surface using Raman spectroscopy. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2012-01-30 19:23:48.958
|
Page generated in 0.0622 seconds