• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microfabricated Devices For DNA Analysis

Pal, Debjani 01 1900 (has links) (PDF)
No description available.
2

Quantum interaction phenomena in p-GaAs microelectronic devices

Clarke, Warrick Robin, Physics, Faculty of Science, UNSW January 2006 (has links)
In this dissertation, we study properties of quantum interaction phenomena in two-dimensional (2D) and one-dimensional (1D) electronic systems in p-GaAs micro- and nano-scale devices. We present low-temperature magneto-transport data from three forms of low-dimensional systems 1) 2D hole systems: in order to study interaction contributions to the metallic behavior of 2D systems 2) Bilayer hole systems: in order to study the many body, bilayer quantum Hall state at nu = 1 3) 1D hole systems: for the study of the anomalous conductance plateau G = 0.7 ???? 2e2/h The work is divided into five experimental studies aimed at either directly exploring the properties of the above three interaction phenomena or the development of novel device structures that exploit the strong particle-particle interactions found in p-GaAs for the study of many body phenomena. Firstly, we demonstrate a novel semiconductor-insulator-semiconductor field effect transistor (SISFET), designed specifically to induced 2D hole systems at a ????normal???? AlGaAs-on-GaAs heterojunction. The novel SISFETs feature in our studies of the metallic behavior in 2D systems in which we examine temperature corrections to ????xx(T) and ????xy(T) in short- and long-range disorder potentials. Next, we shift focus to bilayer hole systems and the many body quantum Hall states that form a nu = 1 in the presence of strong interlayer interactions. We explore the evolution of this quantum Hall state as the relative densities in the layers is imbalanced while the total density is kept constant. Finally, we demonstrate a novel p-type quantum point contact device that produce the most stable and robust current quantization in a p-type 1D systems to date, allowing us to observed for the first time the 0.7 structure in a p-type device.
3

Quantum interaction phenomena in p-GaAs microelectronic devices

Clarke, Warrick Robin, Physics, Faculty of Science, UNSW January 2006 (has links)
In this dissertation, we study properties of quantum interaction phenomena in two-dimensional (2D) and one-dimensional (1D) electronic systems in p-GaAs micro- and nano-scale devices. We present low-temperature magneto-transport data from three forms of low-dimensional systems 1) 2D hole systems: in order to study interaction contributions to the metallic behavior of 2D systems 2) Bilayer hole systems: in order to study the many body, bilayer quantum Hall state at nu = 1 3) 1D hole systems: for the study of the anomalous conductance plateau G = 0.7 ???? 2e2/h The work is divided into five experimental studies aimed at either directly exploring the properties of the above three interaction phenomena or the development of novel device structures that exploit the strong particle-particle interactions found in p-GaAs for the study of many body phenomena. Firstly, we demonstrate a novel semiconductor-insulator-semiconductor field effect transistor (SISFET), designed specifically to induced 2D hole systems at a ????normal???? AlGaAs-on-GaAs heterojunction. The novel SISFETs feature in our studies of the metallic behavior in 2D systems in which we examine temperature corrections to ????xx(T) and ????xy(T) in short- and long-range disorder potentials. Next, we shift focus to bilayer hole systems and the many body quantum Hall states that form a nu = 1 in the presence of strong interlayer interactions. We explore the evolution of this quantum Hall state as the relative densities in the layers is imbalanced while the total density is kept constant. Finally, we demonstrate a novel p-type quantum point contact device that produce the most stable and robust current quantization in a p-type 1D systems to date, allowing us to observed for the first time the 0.7 structure in a p-type device.

Page generated in 0.1328 seconds