Spelling suggestions: "subject:"microfluidic bionalytical detechniques"" "subject:"microfluidic bionalytical 3dtechniques""
1 |
Development of a microfluidic system for efficient DNA purification from large-volume blood samples /Wen, Jian. January 2007 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Includes bibliographical references. Also available via the Internet as viewed 10 July 2008.
|
2 |
Placement and routing for cross-referencing digital microfluidic biochips.January 2011 (has links)
Xiao, Zigang. / "October 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 62-66). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.vi / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Microfluidic Technology --- p.2 / Chapter 1.1.1 --- Continuous Flow Microfluidic System --- p.2 / Chapter 1.1.2 --- Digital Microfluidic System --- p.2 / Chapter 1.2 --- Pin-Constrained Biochips --- p.4 / Chapter 1.2.1 --- Droplet-Trace-Based Array Partitioning Method --- p.5 / Chapter 1.2.2 --- Broadcast-addressing Method --- p.5 / Chapter 1.2.3 --- Cross-Referencing Method --- p.6 / Chapter 1.2.3.1 --- Electrode Interference in Cross-Referencing Biochips --- p.7 / Chapter 1.3 --- Computer-Aided Design Techniques for Biochip --- p.8 / Chapter 1.4 --- Placement Problem in Biochips --- p.8 / Chapter 1.5 --- Droplet Routing Problem in Cross-Referencing Biochips --- p.11 / Chapter 1.6 --- Our Contributions --- p.14 / Chapter 1.7 --- Thesis Organization --- p.15 / Chapter 2 --- Literature Review --- p.16 / Chapter 2.1 --- Introduction --- p.16 / Chapter 2.2 --- Previous Works on Placement --- p.17 / Chapter 2.2.1 --- Basic Simulated Annealing --- p.17 / Chapter 2.2.2 --- Unified Synthesis Approach --- p.18 / Chapter 2.2.3 --- Droplet-Routing-Aware Unified Synthesis Approach --- p.19 / Chapter 2.2.4 --- Simulated Annealing Using T-tree Representation --- p.20 / Chapter 2.3 --- Previous Works on Routing --- p.21 / Chapter 2.3.1 --- Direct-Addressing Droplet Routing --- p.22 / Chapter 2.3.1.1 --- A* Search Method --- p.22 / Chapter 2.3.1.2 --- Open Shortest Path First Method --- p.23 / Chapter 2.3.1.3 --- A Two Phase Algorithm --- p.24 / Chapter 2.3.1.4 --- Network-Flow Based Method --- p.25 / Chapter 2.3.1.5 --- Bypassibility and Concession Method --- p.26 / Chapter 2.3.2 --- Cross-Referencing Droplet Routing --- p.28 / Chapter 2.3.2.1 --- Graph Coloring Method --- p.28 / Chapter 2.3.2.2 --- Clique Partitioning Method --- p.30 / Chapter 2.3.2.3 --- Progressive-ILP Method --- p.31 / Chapter 2.4 --- Conclusion --- p.32 / Chapter 3 --- CrossRouter for Cross-Referencing Biochip --- p.33 / Chapter 3.1 --- Introduction --- p.33 / Chapter 3.2 --- Problem Formulation --- p.34 / Chapter 3.3 --- Overview of Our Method --- p.35 / Chapter 3.4 --- Net Order Computation --- p.35 / Chapter 3.5 --- Propagation Stage --- p.36 / Chapter 3.5.1 --- Fluidic Constraint Check --- p.38 / Chapter 3.5.2 --- Electrode Constraint Check --- p.38 / Chapter 3.5.3 --- Handling 3-pin net --- p.44 / Chapter 3.5.4 --- Waste Reservoir --- p.45 / Chapter 3.6 --- Backtracking Stage --- p.45 / Chapter 3.7 --- Rip-up and Re-route Nets --- p.45 / Chapter 3.8 --- Experimental Results --- p.46 / Chapter 3.9 --- Conclusion --- p.47 / Chapter 4 --- Placement in Cross-Referencing Biochip --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- Problem Formulation --- p.50 / Chapter 4.3 --- Overview of the method --- p.50 / Chapter 4.4 --- Dispenser and Reservoir Location Generation --- p.51 / Chapter 4.5 --- Solving Placement Problem Using ILP --- p.51 / Chapter 4.5.1 --- Constraints --- p.53 / Chapter 4.5.1.1 --- Validity of modules --- p.53 / Chapter 4.5.1.2 --- Non-overlapping and separation of Modules --- p.53 / Chapter 4.5.1.3 --- Droplet-Routing length constraint --- p.54 / Chapter 4.5.1.4 --- Optical detector resource constraint --- p.55 / Chapter 4.5.2 --- Objective --- p.55 / Chapter 4.5.3 --- Problem Partition --- p.56 / Chapter 4.6 --- Pin Assignment --- p.56 / Chapter 4.7 --- Experimental Results --- p.57 / Chapter 4.8 --- Conclusion --- p.59 / Chapter 5 --- Conclusion --- p.60 / Bibliography --- p.62
|
3 |
Development of a microfluidic immunoassay platform for the rapid quantification of low-picomolar concentrations of protein biomarkersHerrmann, Marc. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Biomedical Engineering. Title from title page of PDF (viewed 2008/01/12). Includes bibliographical references.
|
4 |
Design and development of surface plasmon resonance imaging microfluidic assays /Foley, Jennifer Olivia. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 228-245).
|
Page generated in 0.0585 seconds