Spelling suggestions: "subject:"microfluidic channel"" "subject:"nicrofluidic channel""
1 |
Design, fabrication and testing of a microfluidic channel platform for sensor chip manipulation and data retreivalChen, Caipeng January 2013 (has links)
Thesis (M.Sc.Eng.)PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / The exploration and production of oil and gas resources require innovative information acquisition strategies for wellbore environments to improve reservoir management. In this study, a microfluidic channel data retrieval platform was proposed for multiple sensor chip manipulation, wireless charging and information extraction in fluidic mediums.
The working principle of near-field magneto inductive coupling was investigated and a prototype of a microfluidic channel integrated with a spiral reader antenna was designed and fabricated. Sensor chip manipulations and dynamic couplings between readers and sensors were demonstrated inside the proposed microfluidic channel.
Furthermore, solid fluidic interaction between sensors and flows was analyzed. Comsol simulation was conducted to quantitatively characterize flow drag forces inside the channel. To prevent communication interference between sensors in the proposed coupling region, sensor separation strategies based on side channel and meander channel design were proposed and realized to separate sensors one by one by the desired distance.
To enhance the efficiency of the sensor separation process, a new channel design based on a spinning blade with real-time image processing was also developed for feedback control of separation.
Additionally, a 500-micron cubic sensor antenna was cut by a dicing saw and assembled into an 800-micron cubic package. Magneto inductive couplings between readers and the assembly package were conducted out of the channel. The results show that the coupling effect is strongly related with the orientation between the reader and the assembly package. Finally, the assembly package control with desired velocity and direction in oil mediums was successfully realized inside the channel. / 2031-01-01
|
2 |
Theory of the microfluidic channel angular accelerometer for inertial measurement applicationsWolfaardt, H Jurgens 15 May 2007 (has links)
Please read the abstract in the front pages of the file named 00dissertation / Dissertation (MEng (Mechanical))--University of Pretoria, 2007. / Mechanical and Aeronautical Engineering / unrestricted
|
3 |
Rapid Detection of Flowing Objects in Microchannel Utilizing the Chromatic Aberration Effect under a Dark-field Illumination SchemeSu, Shin-Yu 21 July 2012 (has links)
This research mainly develops a new z-position measurement based on the chromatic aberration effect. An objective-type dark-field illumination scheme is built to produce diascopic chromatic aberration light, and aimed to enhance the signal-to-noise ratio. The xenon lamp is adapted to create white light with continuous spectrum, besides, lens with low Abbe number is needed to extend the degree of chromatic aberration, so lens made of PMMA is as a chromatic aberration component. In the proposed system, the depths of samples in micro-channel is illuminated by the dispersed light and scatter the optical signals, which are captured by a low numerical aperture (N.A.) objective lens. After the simple normalization, the intensity ratio of two selected wavelengths 450 nm (blue light) and 670 nm (red light) from the scattered spectrum becomes a reliable index for the depth information of the detecting objects. By means of establishing the relationship between depth and intensity ratio, every object flowing through diagnosed spot is able to be determined the depth level by cross-referencing the database. By using spectrometer as detector, delicate moving components for light filtering or electrical stage for light scanning can be excluded for high-speed z-position detection. Furthermore, in order to identify the depth level of sample with high flowing rate, avalanche photodiodes are adapted to achieve rapid detection.
The experimental results show that the relationship between depth and intensity ratio is a parabola curve, but in this research, the region which tends to behavior linearly is adapted. The proposed system provides a linear detection range of ¡Ó15 £gm for particles with a diameter of 20 £gm. The lens with high Abbe number only obtains ¡Ó10 £gm with linear detection range though, the resolution for size is better than PMMA. The BK7 lens is capable to discriminate the depth change of 2 £gm micro-beads, note that there is no limitation of depth discrimination in this system, because of the measurement is achieved by cross-referencing the linear line. The use of UV-Vis-NIR spectrometer enable this system to analyze the depths of the samples in flow rate 0.5 mm/s. To gain the higher performance, the two avalanche photodiodes are utilized, and the short(CWL=450 nm, ¡Ó20 nm) and long(CWL=650 nm, ¡Ó20 nm) band pass filter are also equipped to represent enhancements of blue and red ray. The effective detection range extends to ¡Ó25 £gm and has high linearity(R square=0.99285) after the optimization of light stop. In high flowing rate detection, this system is able to identify the depth of sample when the flow velocity is 4.167 mm/s, the calculated throughput is 126 particles/s. It also successfully analyzes the depth of flowing human erythrocytes under the flow velocity is 2.778 mm/s, the velocity which the developed system is capable to analyze is about 5-8 folds to the conventional micro-PIV system.
With this novel and simple approach, there will be the quantified information from z-direction of flowing body for bio-analysis, and also benefits estimating the performance of micro structure or device in the microfluidic chip, also the analysis of flow field. Except for dynamical detection, this system also be capable to apply in a open and static situation, such as cell or tissue proliferation assay.
|
4 |
Design, Fabrication and Characterization of Optical Biosensors Based on (Bloch) Long Range Surface Plasmon WaveguidesKhodami, Maryam 22 June 2020 (has links)
In this thesis by articles, I propose and demonstrate the full design, fabrication and characterization of optical biosensors based on (Bloch) Long Range Surface Plasmon Polaritons (LRSPPs). Gold waveguides embedded in CYTOP with an etched microfluidic channel supporting LRSPPs and gold waveguides on a one-dimensional photonic crystal (1DPC) supporting Bloch LRSPPs are exploited for biosensing applications.
Straight gold waveguides embedded in CYTOP supporting LRSPPs as a biosensor, are initially used to measure the kinetics constants of protein-protein interactions. The kinetics constants are extracted from binding curves using the integrated rate equation. Linear and non-linear least squares analysis are employed to obtain the kinetics constants and the results are compared. The device is also used to demonstrate enhanced assay formats (sandwich and inhibition assays) and protein concentrations as low as 10 pg/ml in solution are detected with a signal-to-noise ratio of 20 using this new optical biosensor technology.
CYTOP which has a refractive index close to water is the fluoropolymer of choice in current state of the art waveguide biosensors. CYTOP has a low glass transition temperature which introduces limitations in fabrication processes. A truncated 1D photonic crystal can replace a low-index polymer cladding such as CYTOP, to support Bloch LRSPPs within the bandgap of the 1DPC over a limited ranges of wavenumber and wavelength.
Motivated by quality issues with end facets, we seek to use grating couplers in a broadside coupling scheme where a laser beam emerging from an optical fiber excites Bloch LRSPPs on a Au stripe on a truncated 1D photonic crystal. Adiabatic and non-adiabatic flared stripes accommodating wide gratings size-matched to an incident Gaussian beam are designed and compared to maximise the coupling efficiency to LRSPPs. The gratings are optimized, initially, through 2D modelling using the vectorial finite element method (FEM). Different 3D grating designs were then investigated via 3D modelling using the vectorial finite difference time domain (FDTD) method.
Given their compatibility with planar technologies, gratings and waveguides can be integrated into arrays of biosensors enabling multi-channel biosensing. A multi-channel platform can provide, e.g., additional measurements to improve the reliability in a disease detection problem. Thus, a novel optical biosensor based on Bloch LRSPPs on waveguide arrays integrated with electrochemical biosensors is presented. The structures were fabricated on truncated 1D photonic crystals comprised of 15 period stack of alternating layers of SiO2/Ta2O5. The optical biosensors consist of Au stripes supporting Bloch LRSPPs and integrate grating couplers as input/output means.
The Au stripes also operate as a working electrode in conjunction with a neighboring Pt counter electrode to form an electrochemical sensor. The structures were fabricated using bilayer lift-off photolithography and the gratings were fabricated using overlaid e-beam lithography. The planar waveguides are integrated into arrays capable of multichannel biosensing. The wafer is covered with CYTOP as the upper cladding with etched microfluidic channels, and wafer-bonded to a borofloat silica wafer to seal the fluidic channels and enable side fluidic interfaces. The proposed device is capable in principle of simultaneous optical and electrochemical sensing and could be used to address disease detection problems using a multimodal strategy.
|
5 |
Dvoufotonová fotopolymerace více laserovými svazky / Two-photon photopolymerization with multiple laser beamsSkalický, Jiří January 2017 (has links)
Photopolymerization is a technique used to create surface structures or microobjects from a photoresist. This process is started by illuminating the sample with a light of proper wavelength absorbed by the resist. After exposure, the sample is processed according to the type of the photoresist – be it heating, treating with developer or just washing the unaffected monomer with some reagent. Focused femtosecond laser beam with double wavelength can be used in the process. Short pulse length with high photon density starts two-photon absorption localized in the vicinity of focal point. The method resolution is thus increased and details with 1/10 micrometer size can be created. Moreover, very short laser pulse decreases the heat affected zone and the risk of thermal initiation is minimized. Manufacturing of larger structures composed of tiny details with two-photon photopolymerization is time-demanding process. Therefore, we have complemented the optical setup with spatial light modulator (SLM), which splits the incoming laser beam into several beams with holograms dynamically generated by a computer. Polymerization can be thus performed by multiple foci simultaneously which can be used to create separated microparticles or periodical surface structures. Additional speed improvement of the process can be substitution of static configuration, requiring sample replacement after each exposition, with continuous setup using microfluidic channel steadily supplied with photoresist transported to the active region of the sample.
|
Page generated in 0.0448 seconds