• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microparticules à libération prolongée et réduisant la libération intiale prématurée / Prolonged release microparticles able to reduce the initial burst effect

Sheikh Hassan, Ahmed 26 May 2008 (has links)
Les formes multiparticulaires injectables présentent l’inconvénient d’une libération initiale prématurée dont les conséquences sont une toxicité systémique si les concentrations sanguines du principe actif deviennent importantes ainsi qu’une modification de la libération. Pour résoudre ce problème, des microparticules composites ont été mises au point : il s’agit de microparticules encapsulant des nanoparticules. Le concept a d’abord été démontré in vitro en encapsulant des nanoparticules de poly(epsilon-caprolactone) dans un polymère non biodégradable en choisissant comme modèles une molécule de faible masse moléculaire (ibuprofène) et un peptide (acétate de triptoréline). L’originalité du travail réside dans le choix des polymères et des solvants retenus pour la fabrication des microparticules. Le solvant utilisé pour fabriquer les microparticules doit être un non-solvant du polymère des nanoparticules. L’acétate d’éthyle répondait à ces conditions puisqu’il ne dissout pas la poly(epsilon-caprolactone) mais que c’est un excellent solvant de l’éthylcellulose ou du polymère polycationique utilisé dans la première partie du travail. Sur la base d’études de libération in vitro, il a ainsi été démontré que les microparticules composites permettaient effectivement de fortement réduire cette libération précoce tout en continuant d’assurer une libération prolongée. Dans un deuxième temps, la réduction de la libération initiale a été confirmée par une étude in vivo chez le rat avec 2 principes actifs modèles : ibuprofène et insuline. Toutefois, le polymère de la matrice des microparticules a été remplacé par un copolymère biodégradable constitué d’acides lactique et glycolique. Il a été démontré que le nouveau concept de microparticules composites permettait de proposer une forme originale limitant la libération initiale des principes actifs suite à leur administration sous-cutanée ou intramusculaire tout en assurant une libération prolongée / Multiparticular injectable dosage forms present a burst effect known to lead to i) a systemic toxicoligal critical issue if blood concentrations of the drug are too high and ii) a change in the release profile due to a lower loading charge in microparticles. In order to solve this problem, composite microparticles have been developed: they consist in nanoparticles encapsulated in microparticles. Such a concept has been demonstrated in vitro by encapsulating poly(epsiloncaprolactone) nanoparticles in a non-biodegradable polymeric matrix with two model drugs: a small molecular weight drug (ibuprofene) and a peptide (triptorelin acetate). The novelty of the research work lies on the adequate choice of polymers and solvents used for microparticles manufacturing. Indeed, the solvent used to manufacture microparticles has to be a non-solvent of the nanoparticles polymer. Ethyl acetate was a good candidate since it does not dissolve poly(epsilon-caprolactone) nanoparticles but is an excellent solvent for ethylcellulose and the polycationic polymer used in the first part of the work. Based on in vitro release studies, it was demonstrated that composite microparticles allowed the initial release to be strongly reduced together with a prolonged release. In a second part, the burst release reduction has been confirmed in vivo in rats with 2 drug models: ibuprofen and insulin. However, the microparticles polymer matrix was replaced by a biodegradable copolymer made of lactic and glycolic acids. It has been demonstrated that the novel composite microparticles were an innovative dosage form able to control the initial burst release often associated to microparticles after sub-cutaneous or intramuscular administration while still maintaining the prolonged release of the encapsulated drugs. Such a result can be associated with the more difficult diffusion of the drug through the two consecutive polymeric barriers of nanoparticles and microparticles.
2

Microparticules lipidiques solides composites à rétention gastrique pour la libération prolongée de médicament / Gastroretentive composites solid lipid microparticles for extended-release of drug

Perge, Laurent 14 December 2011 (has links)
Ce travail porte sur la préparation, la caractérisation physico-chimique et l'évaluation biopharmaceutique de Microparticules Lipidiques Solides Composites (MLSC) innovantes assurant la gastrorétention et la libération progressive d'un principe actif modèle hydrophobe, l'ibuprofène. Une méthode d'émulsification à chaud est utilisée pour préparer ces MLSC, stabilisées par des nanoparticules de silice Aérosil® d'hydrophobie variée, selon le principe des « émulsions de Pickering », en remplacement de surfactifs organiques. Ces nanoparticules inorganiques se retrouvent en surface et dispersées au coeur des MLSC dans tous les cas. L'utilisation d'Aérosil® hydrophobe permet la formation de MLSC homogènes de plus de 100 µm de diamètre. Il est à noter que la présence de silice, en fonction de la charge en ibuprofène, a une influence certaine sur les cinétiques de libération du principe actif, que ce soit dans le PBS de pH 7.4 ou le milieu gastrique simulé de pH 1.2, principalement en modulant la taille des microparticules. Elle permet aussi de stabiliser sur une période de 6 mois les propriétés physico-chimiques et biopharmaceutiques des MLSC, d'améliorer leurs propriétés d'usage, comme l'écoulement, la résistance à l'écrasement et la flottaison dans un milieu gastrique simulé. Enfin, le recouvrement des MLSC par des polysaccharides assure la bioadhésion sur des membranes biologiques simulées à base de mucine en accélérant le plus souvent la libération de l'ibuprofène. Néanmoins, la stabilisation de MLSC avec des nanoparticules de silice dispersées au sein de matrices d'alginate gélifiées au CaCl2 avant lyophilisation constitue une nouvelle voie prometteuse pour la libération prolongée de principe actif hydrophobe dans l'estomac car ce polymère assure leur bioadhésion sur plus de 4h sans toutefois modifier le profil de libération de l'ibuprofène. / The aim of this work consists in the preparation, physic-chemical characterization and biopharmaceutical evaluation of innovative Composite Solid Lipid Microparticles (CSLM), allowing gastroretention and extended-release of a model hydrophobic drug, ibuprofen. Hot Melt emulsification's method is used to prepare these CSLM, stabilized by Aerosil® nanoparticles of various hydrophobicity as “emulsion of Pickering” instead of using an organic surfactant. Nanoparticles of silica take place on surface and are dispersed into CSLM in all cases. Using hydrophobic Aerosil allow the preparation of homogeneous over 100µm size CSLM. Presence of silica depending on the charge of ibuprofen influences the ibuprofen kinetics of release in both PBS ph 7.4 and simulated gastric fluid pH 1.2 by modulating the size of microparticles. Silica nanoparticles are also able to stabilize on a period of over 6 months the physic-chemical and biopharmaceuticals properties of CSLM, to improve their use properties, as helping free-flowing, enhancing crushing strength, and floating of CSLM in simulated gastric fluid. Finally CSLM coating with polysaccharides allows their bioadhesion on mucine simulated biological membrane, with an increased ibuprofen kinetics of release in most of the cases. Nevertheless, silica nanoparticles stabilized CSLM dispersed in CaCl2 gelified alginate matrices before freeze drying represent a new promising way for the extended release of hydrophobic drugs in stomach because this polymer can promote their bioadhesion for more than 4h without any change in the kinetics of ibuprofen release.

Page generated in 0.0659 seconds