• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imine/azo-linked microporous organic polymers : Design, synthesis and applications

Xu, Chao January 2015 (has links)
Microporous organic polymers (MOPs) are porous materials. Owing to their high surface area, tunable pore sizes and high physicochemical stability, they are studied for applications including gas capture and separation and heterogeneous catalysis. In this thesis, a series of imine/azo-linked MOPs were synthesized. The MOPs were examined as potential CO2 sorbents and as supports for heterogeneous catalysis. The MOPs were synthesized by Schiff base polycondensations and oxidative couplings. The porosities of the imine-linked MOPs were tunable and affected by a range of factors, such as the synthesis conditions, monomer lengths, monomer ratios. All the MOPs had ultramicropores and displayed relatively high CO2 uptakes and CO2-over-N2 selectivities at the CO2 concentrations relevant for post-combustion capture of CO2. Moreover, the ketimine-linked MOPs were moderately hydrophobic, which might increase their efficiency for CO2 capture and separation. The diverse synthesis routes and rich functionalities of MOPs allowed further post-modification to improve their performance in CO2 capture. A micro-/mesoporous polymer PP1-2, rich in aldehyde end groups, was post-synthetically modified by the alkyl amine tris(2-aminoethyl)amine (tren). The tethered amine moieties induced chemisorption of CO2 on the polymer, which was confirmed by the study of in situ infrared (IR) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. As a result, the modified polymer PP1-2-tren had a large CO2 capacity and very high CO2-over-N2 selectivity at low partial pressures of CO2. Pd(II) species were incorporated in the selected MOPs by means of complexation or chemical bonding with the imine or azo groups. The Pd(II)-rich MOPs were tested as heterogeneous catalysts for various organic reactions. The porous Pd(II)-polyimine (Pd2+/PP-1) was an excellent co-catalyst in combination with chiral amine for cooperatively catalyzed and enantioselective cascade reactions. In addition, the cyclopalladated azo-linked MOP (Pd(II)/PP-2) catalyzed Suzuki and Heck coupling reactions highly efficiently. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 7: Manuscript.</p>
2

Funkcionalizované mikroporézní polymerní sítě připravené z ethynylarenů / Functionalized microporous polymer networks prepared from ethynylarenes

Stahlová, Sabina January 2016 (has links)
The preparation of a new group of functionalized conjugated polymer networks has been described based on spontaneous quaternization polymerization of ethynylpyridines with bis(bromomethyl)arenes. The networks consisted of polyacetylene chains with pyridyl and pyridiniumyl pendants cross-linked with -CH2(arylene)CH2- links. The variation of the ratio of monomer and quaternization agent in the feed modified the ratio of pyridyl and pyridiniumyl groups in the networks (pyridyl/pyridiniumyl ratios from 0 to 1.32). The networks did not exhibit a permanent microporosity that could be confirmed by nitrogen adsorption at 77 K. Nevertheless, all networks were active in capture of CO2 at 293 K (up to 0.73 mmol CO2/g, 750 Torr). It has been hypothesized that CO2 capture reflected formation of a temporary porous texture of the networks through conformational changes of the network segments enabled by the segments mobility at room temperature. The preparation of functionalized conjugated polymer networks with permanent micro/mesoporosity (SBET up to 667 m2 /g) has been described that was based on chain coordination copolymerization of acetylenic monomers. The copolymerization of 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl with mono or diethynylbenzenes bearing NO2 or CH2OH groups has been demonstrated as...
3

Konjugované porézní polymery odvozené od diethynylarenů řetězovou polymerizací a polycyklotrimerizací / Conjugated porous polymers derived from diethynylarenes by chain-growth polymerization and polycyclotrimerization

Slováková, Eva January 2015 (has links)
4 ABSTRACT The synthesis has been described yielding a new type of rigid conjugated polymer networks which possess a high content of permanent micropores and macropores and exhibit high surface areas up to 1469 m2/g. The networks have been prepared via chain-growth coordination polymerization catalysed with insertion catalysts based on Rh complexes. This polymerization has been newly applied to bifunctional acetylenic monomers of diethynylarene type (1,4-diethynylbenzene, 1,3-diethynylbenzene and 4,4'-diethynylbiphenyl). The covalent structure of the networks consists of the polyacetylene main chains densely connected by arylene struts. The W and Mo metathesis catalysts have been revealed as inefficient for the synthesis of these networks. The increase in the polymerization temperature and time has been shown to affect positively the content and the diameter (up to 22 nm) of the mesopores in the networks. A mechanism has been proposed that explains the mesopores formation as a result of mutual knitting of small particles of the microporous polymer. The application of emulsion polymerization technique allowed to prepare texturally hierarchical polyacetylene networks possessing interconnected open macropores (diameter up to 4,8 μm) the walls of which exhibited micro/mesoporous texture. It was demonstrated...

Page generated in 0.0949 seconds