Spelling suggestions: "subject:"microrobot"" "subject:"microrobots""
21 |
Small-scale Technologies for Enhanced Diagnostics and TherapeuticsAnastasiia Vasiukhina (15348001) 27 April 2023 (has links)
<p>Miniaturization of technologies to milli-, micro- and nanoscale offers numerous advantages for diagnostic and therapeutic biomedical applications. In comparison to their macro-scale counterparts, these small-scale systems are more portable, less invasive and less costly. They can facilitate rapid, sensitive and high throughput detection of abnormalities, help track disease progression, reduce sample consumption and improve therapeutic efficacy of drug delivery while decreasing systemic toxicity. Thus, there is clearly a need for creating innovative milli-, micro- and nanoscale tools that can uncover new possibilities in detection and treatment of various types of diseases. The overall objective of this dissertation was to develop novel small-scale technologies that could help enhance diagnostic and/or therapeutic outcomes in patients with cancer, opioid addiction and inflammatory bowel disease. First, we developed an echogenically stable nanodroplet ultrasound contrast agent with potential applications in extravascular molecular imaging of tumors and targeted cancer therapies. Then, we created a polymer blend microsphere system that could be integrated in prescription opioid tablets to develop an abuse-deterrent formulation against smoking. Finally, we designed a release system for localized delivery of aminosalicylates from magnetically actuated millirobots in the colon to improve therapeutic outcomes in patients suffering from inflammatory bowel disease. Overall, the technologies we developed could serve as a basis for designing diagnostic and therapeutic tools that are superior to currently existing platforms.</p>
|
22 |
Etude et réalisation d'un module de locomotion pour microrobot d'inspection intratubulaire. Actionnement par fils AMF d'un cadre forcé en post-flambement à deux états d'équilibre stableRotinat-Libersa, Christine 16 July 2001 (has links) (PDF)
Le travail présenté dans ce mémoire constitue une ébauche des différentes études nécessaires au développement d'un microrobot d'exploration intratubulaire autonome inédit. Constitué d'un assemblage de cinq modules locomoteurs identiques, le futur microrobot devra inspecter des réseaux de tubes industriels de diamètre inférieur à 15 mm, présentant des coudes et des bifurcations. L'actionnement judicieux des différents modules permettra sa progression dans le tube, à la manière du lombric. Nos efforts se sont portés sur l'étude, la fabrication et la mise au point du module locomoteur, en cherchant à optimiser le paramètre 'vitesse de déplacement' du futur microrobot. Cet actionneur, de conception originale, est constitué d'un cadre forcé en postflambement, à deux états d'équilibre stable, dont le basculement d'un état à l'autre est commandé par des fils en Alliage à Mémoire de Forme (AMF). Une étude théorique à l'état d'équilibre, puis un modèle statique simplifié aux éléments finis, prenant en compte les grands déplacements de post-flambement lors du chargement menant au basculement, ont facilité le dimensionnement du cadre et le choix du matériau. Ensuite, des tests de caractérisation mécanique réalisés sur un prototype du module, à une échelle supérieure, ont été nécessaires pour l'adaptation de fils AMF éduqués. L'effet Joule étant le moyen de chauffage qui a été retenu pour engendrer la contraction de ces fils, nous évoquons quelques aspects liés à la commande d'un module, et au contrôle de la transformation des AMF par la mesure de leur résistance électrique. Enfin, une étude expérimentale du comportement au contact d'un module nous permet d'évaluer l'influence de différents paramètres sur les conditions de maintien du robot dans un tube vertical. Nous en déduisons alors les possibilités de charge embarquée par le futur microrobot, dans l'optique de le munir de capteurs et de sources d'énergie nécessaires à son autonomie.
|
Page generated in 0.0224 seconds