• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 11
  • 11
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Frequent p16-independent inactivation of p14ARF in human melanoma

Freedberg, D.E., Rigas, S.H., Russak, J., Gai, W., Kaplow, M., Osman, I., Turner, F., Randerson-Moor, J.A., Houghton, A., Busam, K., Bishop, D.T., Bastian, B.C., Newton-Bishop, J.A., Polsky, D. January 2008 (has links)
BACKGROUND: The tumor suppressors p14(ARF) (ARF) and p16(INK4A) (p16) are encoded by overlapping reading frames at the CDKN2A/INK4A locus on chromosome 9p21. In human melanoma, the accumulated evidence has suggested that the predominant tumor suppressor at 9p21 is p16, not ARF. However, recent observations from melanoma-prone families and murine melanoma models suggest a p16-independent tumor suppressor role for ARF. We analyzed a group of melanoma metastases and cell lines to investigate directly whether somatic alterations to the ARF gene support its role as a p16-independent tumor suppressor in human melanoma, assuming that two alterations (genetic and/or epigenetic) would be required to inactivate a gene. METHODS: We examined the p16/ARF locus in 60 melanoma metastases from 58 patients and in 9 human melanoma cell lines using multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction (PCR) to detect deletions, methylation-specific PCR to detect promoter methylation, direct sequencing to detect mutations affecting ARF and p16, and, in a subset of 20 tumors, immunohistochemistry to determine the effect of these alterations on p16 protein expression. All statistical tests were two-sided. RESULTS: We observed two or more alterations to the ARF gene in 26/60 (43%) metastases. The p16 gene sustained two or more alterations in 13/60 (22%) metastases (P = .03). Inactivation of ARF in the presence of wild-type p16 was seen in 18/60 (30%) metastases. CONCLUSION: Genetic and epigenetic analyses of the human 9p21 locus indicate that modifications of ARF occur independently of p16 inactivation in human melanoma and suggest that ARF is more frequently inactivated than p16.

Page generated in 0.1476 seconds