Spelling suggestions: "subject:"microscopie superresolution"" "subject:"microscopies superresolution""
1 |
Self-assembly of enveloped virus : theoretical dynamics and methods for fluorescence measurements analysis / Autoassemblage des virus enveloppés : dynamique théorique et méthodes d'analyse des mesures par fluorescenceVerdier, Timothée 13 November 2015 (has links)
Cette thèse porte sur la description de l'assemblage des virus dans le cadre de la physique statistique ainsi que sur les méthodes de mesure de cet assemblage utilisant les marqueurs fluorescents. Nous nous y attachons à décrire la dynamique de l'agrégation des protéines aux échelles de la population et du virus unique. Nous proposons deux méthodes pour mesurer les grandeurs physiques associées : taille et forme de la structure finale d'une part, taux d'agrégation au cours de la croissance d'autre part. Dans ce travail, nous nous sommes intéressés à la description physique de l'auto-assemblage des protéines virales. La physique de l'auto-assemblage in-vitro des virus sphériques, dont la structure est déterminée par l'agencement régulier de leurs constituants protéiques, a été théoriquement et expérimentalement caractérisée auparavant par des modèles d'agrégation. Les modèles existants décrivaient l'assemblage à quantité de composants viraux fixée dans un système ferme à partir des constituants élémentaires du virus. In-vivo, la situation est bien entendu différente. Abstraction faite de la grande complexité du milieu cellulaire, les virus s'échappent de la cellule une fois formés pour aller infecter de nouvelles cellules. De plus, la quantité de constituants est sans cesse modifiée par la fabrication ou la dégradation des protéines virales. Enfin les méthodes de mesures utilisées in-vitro ne sont généralement plus envisageables in-vivo. Nous avons donc étudié les effets d'un flux de matière dans système ouvert via le calcul de l'état stationnaire, et via la résolution numérique des équations d'évolution des populations d'agrégats qui décrivent la cinétique d'agrégation des protéines virales. Dans ce cadre, nous avons mis en valeur le lien entre la description de l'état général du système en termes de populations et le devenir individuel d'un virus en formation pour le suivi duquel des méthodes expérimentales existent. Nous nous sommes alors attachés à proposer un traitement approprié de telles données expérimentales pour déterminer les valeurs des paramètres physiques du modèle / In this thesis work, we study the self-assembly of viral particles and focus on the analysis of measurements based on fluorescence labeling of viral proteins. We propose a theoretical model of the dynamic of viral proteins self-assembly at the cell membrane based on previous models developed to describe the in-vitro assembly of spherical viruses. We study the evolution of the populations in the successive stages of viral budding as well as the evolution of single particle within this framework. We also provide various data analysis to measure the physical values involved in the process: rate of aggregation during the bud growth, size and shape of the eventual structure. Viruses are biological objects unable to replicate without infecting an host cell since they lack part of the molecular machinery mandatory for genetic code replication and proteins production. Originally aimed at controlling the diseases they cause, the study of viruses is now rich of applications in medical and technological field (gene therapy, phage therapy, targeted therapy, bio-templating, cargo specific encapsulation, etc.). The existent models describing the self-assembly of viral proteins have successfully captured many features observed in the in-vitro experiments. We study the expected evolution when an open system is considered with an input flux of proteins and an output flux of released virion, characteristic of the in-vivo situation. We derive the population distribution at steady state and numerically study their dynamic under constant viral protein input flux. We also study the case of a single bud evolution which can be followed by its fluorescence emission. We study the possibility to estimate shape parameters at the single viral particle level such as radius and completion for the human immunodeficiency virus (HIV) from single molecule localization superresolution microscopy. These techniques known as (f)PALM or (d)STORM, record labeled proteins position with a precision of few to tens of nanometers. We propose an approach base on the maximum likelihood statistical method which is tested on both real and simulated images of fully formed particles. Our results suggest that it can offer a precision on the determination of the global structure finner than the positioning precision of the single proteins. This efficiency is however tempered when the parameter of interest does not affect the figures of merit to which the method is sensitive such as the apparent area and the image contours
|
Page generated in 0.0843 seconds