• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation banding and grain refinement in FCC materials /

Swisher, Douglas Lee. January 2003 (has links) (PDF)
Thesis (Ph. D. in Mechanical Engineering)--Naval Postgraduate School, March 2003. / Dissertation supervisor: T.R. McNelley. Includes bibliographical references (p. 152-166). Also available online.
2

Quantitative STM imaging of metal surfaces

Clarke, A. R. H. January 1996 (has links)
Many deductions made about STM images are based upon the model of Tersoff and Hamann, in which images are given in principal by a combination of surface atomic positions and local charge density. There is a now a need for a fuller understanding of this technique in order to explain experimental evidence which indicates that the tip and sample can interact strongly during normal imaging. In order to investigate the fundamental STM imaging process, a method for deducing the tunnel barrier height has been developed which is based on corrugation height measurements of constant current topographs. From experiments on clean Cu(100), values of the tunnel barrier height have been shown to be somewhat below the workfunction (~ 1-2.5eV) but are in good agreement with other reports of atomically resolved barrier height data. At large values of the tunnel conductance (~ 1μS), a fall-off (based upon extrapolation of large separation data) in the corrugation heights is observed with increasing conductance. This effect is quantitatively explained using a Molecular Dynamics simulation of the tip approaching the sample. The simulation gives a good estimate of both the absolute tip-sample separation and site-dependent tip-surface forces. Distributions of corrugation heights indicate that variations in both tip geometry and chemistry are likely to occur in practice and strongly influence the phenomena described above. Similarly, it is found that increased local tunnel barrier heights are measured when the Cu(100) surface is modified with small numbers of single halogen atoms. This data has been used to estimate the contributions to the increase in local barrier height of both adsorbate induced dipoles and geometric topography. Values for the charge transfer between the surface and adsorbate have been established. The process of tip-induced adsorbate manipulation has also been demonstrated at room temperature.
3

Investigation of ductile fracture under tensile high rate loading /

Liu, Gang, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2002. / Includes bibliographical references (p. 72-87). Also available in electronic format on the Internet.
4

Demostration of non-additivity ans asymmetry in the lateral Casimir force

Chiu, Hsiang-Chih, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references (leaves 146-154). Issued in print and online. Available via ProQuest Digital Dissertations.
5

Study of oxidation mechanisms of zirconium alloys by electron microscopy

Ni, Na January 2011 (has links)
The current work is part of the EPSRC MUZIC project, which established the collaboration among several universities to carry out a multidiscipline study on the breakaway oxidation of zirconium alloys. The overall goal of the project is to further understand the mechanisms of the oxidation and breakaway process of zirconium alloys. This thesis describes the nano/micro-structural study and nano-analysis of the corroded zirconium alloys using up-to-date TEM and 3D focused ion beam (FIB) slicing and reconstruction techniques. The work mainly focused on the characterization of ZIRLO. The oxide morphology in general comprises an inner columnar layer and an outer equiaxed layer, except for a post-second transition oxide grown on a Zr-Nb-Ti test alloy with a very poor corrosion resistance, which exhibits generally only equiaxed grains throughout the whole oxide scale. Detailed investigation reveals oxides in a slower oxidation stage exhibit better developed columnar grain structure. All the oxides, independent of different corrosion stages and alloy types, contain predominantly monoclinic oxide and a small amount of tetragonal oxide. Defects at different length scales were examined. In stead of a sudden burst of crack nucleation at the kinetic transition, a gradual introduction of cracks parallel to the metal/oxide interface throughout the pre-transition stage is found, suggesting no direction correlation between the formation of cracks and the transition. Besides cracks, the oxide also contains different forms of nano-porosity: isolated pores of 1-3 nm or interconnected pores at grain boundaries. The density of interconnected porosity, especially those along the oxide growth direction, increases towards the oxide surface, evolving over time. It is suggested that the kinetic transition is related to the development of an interconnected porosity down to the metal/oxide interface, providing easy pathways for the transportation of oxidation species. The metal-oxide interface has a wavy morphology both in the micrometer and nanometer scale. The roughness develops to a maximum just before the first kinetic transition. An intermediate suboxide layer with complex 3D morphology between the bulk oxide and the metal substrate is found. Quantitative EELS analysis shows the composition of this layer to be 40-50 at. % oxygen. The suboxide appears to develop in thickness with increasing oxidation time for the pre-transition oxides, while is very thin or absent in the post-, and post-second transition oxides. In the suboxide region, multiple phases including &alpha;-Zr, &omega;-Zr, tetragonal oxide and a phase with an unidentified structure were found, suggesting different structures can coexist in the suboxide layer. Second-phase particles (SSPs) of &beta;-Nb and hexagonal Zr(Fe,Nb)<sub>2</sub> types were found in ZIRLO samples and FCC Zr(Fe,Cr)<sub>2</sub> was the predominant type in Zircaloy-4. The SPPs showed delayed oxidation compared to surrounding Zr. In ZIRLO, those containing high Fe contents were found to be oxidized and transform into an amorphous state much earlier than &beta;-Nb. Hydrides of different types (&gamma;, &sigma; and &epsilon;) were observed in the metal and metal/oxide region for both Zircaloy-4 and ZIRLO samples. A higher density of hydrides was seen in post-transition oxides of ZIRLO than in pre-transition oxides.

Page generated in 0.0533 seconds