• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 873
  • 489
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2770
  • 505
  • 471
  • 433
  • 369
  • 311
  • 296
  • 204
  • 189
  • 164
  • 161
  • 150
  • 147
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

L'approche multi-échelles en mécanique des matériaux ou l'importance d'un dialogue transdisciplinaire

Crepin, Jerome 18 June 2008 (has links) (PDF)
L'utilisation des moyens de calcul de type éléments finis couplés aux progrès techniques en matière de mesures de champs expérimentaux, tant microstructuraux que mécaniques, ouvrent la voie à une richesse de dialogue expérience/calcul qui ne se limite plus à la seule réponse macroscopique obtenue sur un volume élémentaire représentatif. L'objectif de ce travail concerne l'exposé de la méthodologie adoptée et des outils développés pour l'identification de paramètres pertinents de lois de comportement de matériaux hétérogènes à partir de la définition de leur microstructure et des mécanismes responsables, au sein du volume élémentaire représentatif, de leur comportement élasto-plastique voire de leur endommagement. Nous nous intéresserons tout particulièrement à préciser la notion d'hétérogénéités, qui est fortement dépendante de la base de mesure choisie, que se soit pour l'expérimentation ou pour les simulations numériques. Nous aborderons d'autre part, les questions relatives à la pertinence de mesures de surface pour décrire le comportement d'un volume de matière puis nous nous focaliserons sur l'intérêt d'utiliser des mesures cinématiques, obtenues en cours d'essais mécaniques in situ comme conditions aux limites des simulations numériques. Nous discuterons de la mise en place de cette méthodologie à partir de résultats obtenus à partir d'alliages métalliques et de matériaux virtuels.
422

Comportement des sédiments marins de grande profondeur : approche multiéchelle

Hammad, Tammam 01 November 2010 (has links) (PDF)
Une analyse expérimentale approfondie avec une approche micro macro a été réalisée sur un matériaucomposé d'un mélange d'argile Kaolinite/Smectite. L'étude a permis de montrer à l'échelle macroscopiquecomme à l'échelle microscopique un comportement particulièrement sensible à la proportion de smectitedans le mélange. La kaolinite (Kaolinite P300) est bien connue du point de vu de sa caractérisation et deson comportement, la smectite (également nommée argile grecque) est de type calcique et a égalementfait l'objet de plusieurs études.Dès 35% de smectite dans le mélange, les résultats sur chemin triaxial montrent que le comportementapproche considérablement celui de la smectite. Par ailleurs, l'investigation à l'échelle microscopique (aumoyen de Microscope Electronique à Balayage complétée par une analyse de diffractions des rayons X)réalisé sur les échantillons après l'essai, met en évidence le fait que, lorsqu'elle dépasse un certain seuil, lafraction en smectite favorise le développement de plans de glissement. Ces plans apparaissent clairementsous forme de groupes de particules de smectite orientées.L'analyse microstructurale utilisée est basée sur une méthode rigoureuse, développée dans le cadre decette thèse, avec un traitement d'images automatisé permettant de fournir des résultats quantitatifs.Cette démarche d'investigation multi‐échelles a été employée afin caractériser le comportement d'unsédiment marin prélevé au large de Golfe de Guinée par 700 m de profondeur d'eau. L'étude, initialementmenée dans le cadre du projet CLAROM (2002‐2005), intéresse l'industrie Offshore. Le sédiment naturelcontient jusqu'à 60% de proportion argileuse avec approximativement 15% de smectite et 50% dekaolinite.
423

Modélisation de la fissuration pour l'évaluation de la perte d'étanchéité des structures en béton armé sous chargements mécaniques

Bongué Boma, Malika 11 December 2007 (has links) (PDF)
L'évaluation du comportement de structures de béton armé est une problématique cruciale dans le domaine du génie civil : l'objectif de cette thèse est la mise en place d'un modèle mécanique capable de décrire l'évolution des paramètres physiques qui régissent l'évolution de la perméabilité de ce matériau. Le béton (initialement micro-fissuré) est modélisé comme un milieu fia microstructure : la cinématique du corps est enrichie par une variable caractéristique de la taille et de l'orientation du champ de fissure. La théorie des forces configurationnelles est utilisée afin de tenir compte des évolutions irréversibles des micro-défauts. Ces deux approches nous permettent de déterminer les équations d'équilibre régissant la déformation du milieu ainsi que la propagation des fissures. Les paramétres utilisés pour décrire la microstructure ont été choisis de faficon fia schématiser le milieu poreux : la résolution des équations de Stokes sur le volume élémentaire représentatif (microstructure) permettra d'évaluer la perméabilité intrinsèque en tout point du corps. Un exemple a été détaillé : on détermine le comportement d'un solide en traction tout en considérant des conditions d'étude simplifiées (champ de fissures homogène, isostaticité, application de la mécanique linéaire de la rupture). Déformation, propagation des fissures et perte de rigidité sont déterminées en fonction du chargement. On présente par ailleurs l'évolution de la perméabilité du milieu : une fois amorcée, la propagation du champ de fissure devient la cause principale de la perte d'étanchéité.
424

Quasiclassical studies of phase-coherent transport in superconducting nanostructures

Seviour, Robert Francis January 1999 (has links)
No description available.
425

Excitonic optical nonlinearities in semiconductors and semiconductor microstructures.

Park, Seung-Han. January 1988 (has links)
This dissertation describes the study of excitonic optical nonlinearities in semiconductors and semiconductor microstructures. The main emphasis is placed on the evolution of optical nonlinearities as one goes from bulk to quantum-confined structures. Included are experimental studies of molecular-beam-epitaxially-grown bulk GaAs and ZnSe, GaAs/AlGaAs multiple-Quantum-Wells (MQW's), and finally, quantum-confined CdSe-doped glasses. The microscopic origins and magnitudes of the optical nonlinearities of bulk GaAs and ZnSe were investigated and the exciton recovery time in ZnSe was measured. A comparison with a plasma theory indicates that in GaAs, band filling and screening of the continuum-state Coulomb enhancement are the most efficient mechanisms, while in ZnSe, exciton screening and broadening are the dominating mechanism for the nonlinearity. The maximum nonlinear index per excited electron-hole pair of ZnSe at room temperature is comparable to that of bulk GaAs and the exciton recovery times are of the order of 100 ps or less. A systematic study of the dependence of the optical nonlinearities on quantum well thickness for GaAs/AlGaAs MQWs and the results of nonlinear optical switching and gain in a 58 A GaAs/AlGaAs MQW are reported and discussed. The maximum change in the refractive index is greatest for the MQWs with the smallest well size and decreases with increasing well size, reaching a minimum for bulk GaAs. The maximum index change per photoexcited carrier increases by a factor of 3 as the well size decreases from bulk to 76 A MQW. A differential energy gain of 0.2 and the contrast of 4 are measured for a 58 MQW using 3 ns laser pulses. The linear and nonlinear optical properties of CdSe semiconductor microcrystallites grown under different heat treatments in borosilicate glasses are investigated. Pump-probe spectroscopic techniques and interferometric techniques were employed to study size quantization effects in these microcrystallites (quantum dots). Nonlinear optical properties due to the transitions between quantum confined electron and hole states are reported for low temperature and room temperature. A relatively large homogeneous linewidth is observed. Single beam saturation experiments for quantum confined samples were performed to study the optical nonlinearities as a function of microcrystallite size. Results indicate that the saturation intensity is larger for smaller size quantum dots.
426

The creation of nanoscale structures on copper surfaces

Parker, Thomas Martin January 1997 (has links)
No description available.
427

Waveguide photonic microstructures in III-V semiconductors

Smith, Christopher J. M. January 1999 (has links)
No description available.
428

MAE measurements and studies of magnetic domains by electron microscopy

Lo, C. C. H. January 1998 (has links)
No description available.
429

Effects of microstructure on the spall behavior of aluminum-magnesium alloys

Whelchel, Ricky L. 22 May 2014 (has links)
This research focuses on the spall properties of aluminum-magnesium (Al-Mg)alloys.Aluminum alloy 5083 (Al 5083) was used as a model alloy for the work performed in this study. Al-Mg alloys represent a light-weight and corrosion resistant alloy system often used in armor plating. It is desirable to process armor plate material to yield a microstructure that provides maximum resistance to spall failure due to blast and projectile impacts. The blast and impact resistance has often been quantified based on the measurement of the spall strength and the Hugoniot elastic limit (HEL). The spall properties of Al-Mg alloys were measured for four different microstructural states resultant from varying processing conditions. The four microstructures include: (a) textured grain structure from a rolled Al 5083-H116 plate, (b) sub-micron grain structure produced using equi-channel angular pressing (ECAP),(c) equiaxed grain structure, and (d) precipitation hardened microstucture from an Al-9wt.% Mg alloy. The overall results show that grain size is not the most dominant microstructural feature affecting spall strength in aluminum alloys, when the impact conditions are the same. Texture, especially if brittle inclusions align along the grains, appears to have the most dominant effect resulting in decreased spall strength. Furthermore, one-dimensional modeling shows that the inclusion size and distribution is the controlling factor for void formation during spalling. Grain size does affect the decompression rate dependence of each microstructure, whereby smaller grain sizes result in a larger power law exponent for fits of spall strength versus decompression rate. Unlike the spall strength, the HEL shows an increasing trend with decreased grain size, as would be expected from a Hall-Petch type effect, indicating that a smaller grain size is best for penetration resistance. Samples processed using ECAP alone provide the best combination of spall strength and HEL and therefore the most promise for improved blast and penetration resistance of aluminum-magnesium alloy armor plates.
430

Magnesium alloy strip produced by a melt-conditioned twin roll casting process

Bayandorian, Iman January 2010 (has links)
Twin roll casting (TRC) offers a promising route for the economic production of Mg sheet, but unfortunately, it produces strip with coarse and non-uniform microstructures and severe centre line segregation. Recently, a novel magnesium strip casting process termed melt conditioned twin roll casting (MC-TRC) was developed that, compared with the conventional TRC process, emphasizes solidification control at the casting stage rather than hot rolling. This was achieved by melt conditioning under intensive forced convection prior to twin roll casting resulting in enhanced heterogeneous nucleation followed by equiaxed growth. In this study the development of TRC and MC-TRC processes and a microstructural comparison of the MC-TRC Mg-alloy strip with that of conventional TRC strip, have been investigated. Emphasis has been focused on the solidification behaviour of the intensively sheared liquid metal, and on the mechanisms for microstructural refinement and compositional uniformity in the MCTRC process. The results of the process development indicate that the MC-TRC process reduces considerably or eliminates defects such as the centre line segregation, voids and cracks at or near the strip surface that are always present in conventional TRC strip. The newly-designed homogenization treatment investigated for TRC and MC-TRC magnesium alloy strips was based on microstructural evolution obtained during heat treatment. The results of the MC-TRC strips showed a much faster recrystallization rate with finer recrystallized grains, which are due to more homogeneous and a finer grain size of the as-cast MC-TRC strips compared with the as-cast TRC strips. During down-stream processing, the effects of MC-TRC process on microstructural evolution of hot-rolled magnesium strips have been understood thoroughly by accurate control of the hot-rolling procedure during each step of strip thickness reduction. This study indicates that the MC-TRC strip requires fewer rolling steps when compared to TRC strip, thus offering reduced processing cost and carbon footprint. Mechanical properties at room temperature of MC-TRC as-cast and rolled sheets are much improved when compared with the conventional TRC as-cast and rolled sheets which can result in a higher quality of final components. The mechanical properties at elevated temperature shows for the first time that the higher elongation and lower yield strength of MC-TRC as-cast strips at a temperature close to its optimised hot-rolling temperature results in better ability for rolling and higher ductility of MC-TRC Mg strip compared with the TRC Mg strip.

Page generated in 0.0378 seconds