Spelling suggestions: "subject:"microstructure fabrication"" "subject:"microstructure abrication""
1 |
Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect DevicesSummitt, Christopher Ryan, Summitt, Christopher Ryan January 2017 (has links)
The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4–6].
These couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool’s high NA optics.
To overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality.
The newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree slope to form the coupler surface. In this method, instead of using an entire exposure in a pixelated manner, only a portion of the Gaussian profile is used, allowing a reduced surface roughness and better control of the surface shape than previously possible with this low NA beam. The surface figure of the mirror is well controlled below 0.04 waves in root-mean-square (RMS) at 1.55 μm wavelength, with mirror angle of 45±1 degrees.
The coupling efficiency is evaluated using a set of polymer waveguides fabricated on the same substrate as the complete proof of concept device. Device insertion loss was measured using a custom built optical test station and a detailed loss analysis was completed to characterize the optical coupling efficiency of the mirror. Surface roughness and angle were also experimentally confirmed. This process opens up a pathway towards large volume fabrication of free-form and high aspect ratio optical components which have not yet pursued, along with well-defined optical structures on a single substrate.
In this dissertation, in Chapter 1, we provide an overview of optical surface fabrication in conjunction with current state of the art on fabrication of free form surfaces in macro and microscopic length scale. The need for optical interconnects is introduced and fabrication methods of micro-optical couplers are reviewed in Chapter 2. In Chapter 3, the complete fabrication process of a mirror based coupler is presented including a custom alignment procedure. In Chapter 4, we provide the integration procedure of the optical couplers with waveguides. In Chapter 5, the alignment of two-lithographic methods is discussed. In Chapter 6, we provide the fabrication procedure used for the waveguides. In Chapter 7, the experimental evaluation and testing of the optical coupler is described. We present a custom test station used for angle verification and optical coupler efficiency measurement. In Chapter 8, a detailed loss analysis of the device is presented including suggestions for future reductions in loss. Conclusions and future work considerations are addressed in Chapter 9.
|
2 |
Piezoelectric Acousto-Optical Modulation in Aluminum Nitride for Integrated RF-PhotonicsGhosh, Siddhartha 01 August 2015 (has links)
Over the past several years, rapid advances in the field of integrated photonics coupled with nanofabrication capabilities have enabled studies of the interaction of light with the mechanics of a variety of physical structures. Concurrently, mechanical resonators have been extensively studied in the MEMS community due to their high quality factors, and have been implemented in a variety of RF filters and oscillators. The combination of MEMS with integrated optomechanical structures can generate a variety of novel devices that can be used for applications in RF-Photonics, timing and optical switching. While there are several demonstrations of electrostatic devices integrated with optomechanical structures, fewer examples exist in the piezoelectric domain. In particular, photonic integration in a piezoelectric material can benefit from some of the traditional strengths associated with this type of actuation, such as the ability to easily scale to higher frequencies of operation by patterning lateral features, the ability to interface with 50Ω electronics and strong electromechanical coupling. In addition, it enables a platform to produce new architectures for photonic-based electronic frequency reference oscillators that incorporate multiple degrees of freedom. This thesis presents the development of a piezoelectrically-actuated acousto-optic modulator in the aluminum nitride (AlN) material system. The process of implementing this device is carried out in five principal stages. First, light coupling from optical fibers to the AlN thin film is demonstrated with the use of on-chip grating couplers, exhibiting a peak insertion loss of -6.6 dB and a high 1 dB bandwidth of 60 nm for operation in the telecommunications C- and L-bands. This is followed by characterization of photonic whispering gallery mode microdisk and microring resonators with optical quality factors on the order of 104. Next, a robust fabrication method combining optical and electron-beam lithography is developed to produce a fully-integrated device preserving the critical features for acoustic and photonic resonators to be colocalized in the same platform. Acousto-optic modulation is demonstrated with the use of a contour mode resonator which drives displacements in the photonic resonator at 653 MHz, corresponding to the mechanical resonance of the composite structure. The modulator is then implemented in an opto-acoustic oscillator loop, for which an initial phase noise of -72 dBc/Hz at 10 kHz offset from the carrier is recorded with a large contribution from thermal noise at the photodetector. Finally, some possibilities to improve the modulator efficiency and oscillator phase noise are provided along with prospects for future work in this area.
|
3 |
The Study of Hexagonal Lattice Pattern Formation of Polystyrene Thin FilmsLin, Yu-Sung 10 February 2011 (has links)
In this study, we investigate and fabricate two-dimensional ordered lattice structure by breath figures method. The breath figures pattern was prepared with the solution of carbon disulfide (CS2) doped with 1% weight concentration of polystyrene. The temperature and the humidity were controlled at ~23¢J and ~60 %, respectively. The breath figures pattern began to expand while CS2 is under evaporation. We explored the relationship between self-assemble of the water droplet and ordered structure via the solution height, the temperature evolution, and the dynamical optical images in the formation process of breath figures pattern. It was found that the radius of the water droplets varying with time follows the power law, £l ~ t £go; £g0=0.76. The fast Fourier transformation and Voronoi Diagram were used to conform that the formation of the breath figures pattern varied form a disordered state to an ordered state with the evaporation of CS2. The understanding of the breath figures pattern provides us to fabricate the photonics with size from nano- to micro-scale and to improve the application of nano device.
|
4 |
Design and Development of Microstereolithography (MSL) System and Its Applications in Microfabrication of Polymer and Ceramic StructuresGoswami, Ankur January 2013 (has links) (PDF)
In the present era where MEMS (Micro Electro-Mechanical Systems) technology is in¬evitable from the perspective of applications in non-silicon based micro-devices (such as biosensors, microfluidics, microvalves etc.), it is imperative to develop different micro¬fabrication technologies which are simple in operation, have low operational cost and high versatility in terms of incorporating different materials. The microfabrication tech¬nologies (e.g: bulk micromachining, surface micromachining, X-ray LIGA (lithoqraphie galvanoformung abformung) etc.), which exist commercially are mostly limited to sili¬con based technologies. They are either constrained in fabricating complex geometry in micro dimension or have high operational cost. Microstereolithography (MSL) is one such rapid prototyping technique, which can satisfy the above requirements to a larger extent. MSL h8B evolved in the l8Bt decade from conventional stereolithographic (SLA) technique, which involves the free-form microfabrication of a UV sensitive liquid resin layer by layer photo-polymerization process, when it is exposed to UV irradiation accord¬ing to the predefined CAD (Computer Aided Design). However, this technique is not limited to polymer microfabrication and it h8B an immense potential to fabricate com¬plex 3D structures of ceramics in micro dimension. In this thesis, the primary focus is on developing an in house built scanning b8Bed MSL system indigenously and to explore the possibility of micro fabrication of different materials (from polymer to ceramics involving different routes. In addition, polymer micro cantilever h8B been fabricated using this technique and its application to surface stress me8Burement h8B been demonstrated.
The thesis comprises of eight chapters. The following section describes the summary
of the individual chapters.
Chapter 1 describes the introduction and background literature of this technol¬ogy. A brief review on MSL technology developed by various research groups and their achievements h8B been listed. Since photopolymerizable resin is the primary material to fabricate micro dimensional structures, the rate of photopolymerization is an impor¬tant phenomena which requires an attention before choosing the photopolymerizable resin. Further, this chapter also describes the photoinitiation principles and the type of photo initiators (PI) which help to photopolymerize the resin in order to fabricate micro dimensional polymer structures. In addition, this chapter also gives a glimpse of applications of this technology in fabrication of micro cantilever b8Bed sensors. The later part of the chapter focused on the microfabrication of ceramic from colloidal and met¬alorganic routes in brief.
In Chapter 2, the design of the in house built MSL system and its working princi¬ples including various optical issues have been addressed. Several research groups have attempted to optimize photopolymerization parameters to incre8Be the throughput of the scanning b8Bed MSL systems through modified beam scanning techniques. Efforts in reducing the curing line width in order to get low feature size have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. The focus of the work h8B been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower photoinitiator (PI) concentration ([c]) in reduc¬ing the minimum curing width to 10-15 jJm, even with the higher spot size (21.4 jJm) rv
through a judiciously chosen gmonomer UPIi' system. In this chapter, two different cl8BS of multifunctional acrylates (1,6 Hexane diol diacrylate (HDDA) and Trimethylol propanetriacrylate (TMPTA)) and one monofunctional methacrylate (methyl mathacry¬late (MMA)) have been chosen to explore their fabricability in micro dimensions using this MSL technology, by varying the various operational parameters including the type and the concentration of the PI.
Chapter 3 deals with the application of this technology in micro cantilever based sensors. Microcantilever based sensors have been explored for several decades for their application in bio-molecular or explosive detection, chemical sensing etc. Due to the adsorption of molecular species on the cantilever surface, differential surface stress gen¬erates between the top and bottom surface of the cantilever. Depending on the type of stress (tensile or compressive) generated, the cantilever bends accordingly. The, novel diffraction based deflection method has been proposed in order to measure the deflection profile accurately for low dimensional structures. To prove this method, a dual mi¬crocantilever structure with sufficiently low gap (100 f.lm) has been fabricated using the developed MSL set up, such that diffraction occurs during transillumination by spherical wavefronts. Among the two micro cantilevers one was fabricated bent with a specific di¬mension with respect to the other. The cantilever material was chosen as poly HDDA for its low elastic modulus in order to achieve high sensitivity. From the obtained diffraction pattern, the bent profile of the each cross section of one cantilever corresponding to the other has been measured. This proposition will enable to measure surface stress at each cross section of the cantilever depending on the adsorbed analyte molecule adsorption.
In Chapter 4, an effort has been made to improve the thermal, thermo mechanical and mechanical properties of the cantilever material (poly HDDA). The sensitivity of a micro cantilever depends precisely on fabrication and material aspects. The former de¬pends on the aspect ratio of the structure and can be controlled by fabrication parameters whereas the latter is inherently limited by the choice of the material. The properties of the material which impact the applicability are elastic modulus, Poisson's ratio, thermal expansion and thermal stability. Hence, these properties are studied for poly HDDA. However, the properties are not completely satisfactory for only poly HDDA (PHDDA) since, PHDDA will fail for high surface stress measurement (>275 mN/m). Hence, it h8B been copolymerized with MMA with an intention to improve the above mentioned properties and to determine the best composition for the micro cantilever application. It is observed by Finite Element Analysis (FEM) that Phpm5050 (HDDA:MMA(50:50)) composition shows optimum sensitivity when reliability is concerned for me8Buring high surface stress (275 mN/m).
Chapter 5 bridges Chapter 2 and Chapter 6. Chapter 2 highlights the polymer mi¬crofabrication where8B, Chapter 6 deals with the microfabrication of ceramics. In order to fabricate ceramic micro objects by MSL, ceramic particles need to be blended with a photopolymerizable monomer followed by l8Ber induced photopolymerization . Under l8Ber irradiation, the monomer gets cured and traps the ceramic particles. Thus near net shape of green ceramic structures are 0 btained. After achieving the near net shape, it is important to remove the polymer, which acts 8B the binder for the green ceramic body. This debinding should be diffusion controlled so 8B to achieve defect free micro ceramics. Here two multifunctional monomers (HDDA and TMPTA) have been chosen 8B a b8Be monomer for fabricating ceramics. Therefore it is essential to understand the debinding mechanism of these polymers. However, (HDDA) h8B high shrinkage upon polymeriza¬tion with low rate of polymerization kinetics and low viscosity where8B the properties of (TMPTA) are exactly opposite. Hence, in order to optimize these properties, copoly¬merization of HDDA and TMPTA h8B been carried out for different compositions and their thermal properties have been investigated to understand the degradation mech¬anism. This chapter deals with the mechanism of thermal degradation by model free kinetic methods with an intention to determine the optimum composition of HDDA and TMPTA copolymer, to used 8B the b8Be monomer material for ceramic microfabrication. Besides, the debinding strategy is also discussed b8Bed on the degradation profile of the optimum composition. TH20S0(TMPTA: HDDA(20:S0)) is found to be the ideal com¬position to fabricate ceramic micro-component by MSL since its degradation is diffusion controlled in N 2 atmosphere.
Chapter 6 describes the methodology of microfabrication of ceramics by the de-veloped MSL technique. A colloidal approach has been adopted to fabricate ceramics in micro-dimensions. Two different ceramics have been chosen, which have potential applications in structural (alumina) and functional (Lead Iron Niobate (PFN))aspects. Before fabricating ceramic micro-objects, ceramic particles need to be blended in the monomer suspension in the presence of dispersant at an optimum solids loading. Opti¬mization of solids loading is important in view of low dimensional shrinkage after sin¬tering. However, lower loading leads to higher shrinkage whereas higher loading would increase the viscosity of the suspension and make the suspension inconvenient to deal with. Hence, rheological studies have been carried out to optimize the solids loading and dispersant concentration. 40 vol% alumina and 35 vol% PFN are found to be the highest achievable solids loading for the chosen monomer (TH2080) composition. This chapter also describes the limitation involved in ceramic microfabrication depending on their scattering factors during laser irradiation. The chapter demonstrates the fabrica¬tion methodology of several complex ceramic(alumina and PFN) micro-objects by the in house built MSL instrument.
Chapter 7 investigates the possibility of microfabrication of ceramics from metalor¬ganic precursor. In this route, titanium metal-organic (Ti-n butoxide) precursor has been chosen which is stabilized by the addition of chelating monomer (2-( methacryloyloxy) ethyl acetoacetate). Following this, the crosslinker and photoinitiators have been added to form Ti photoresist which is coated on top of the bare silicon substrate by spin coating to achieve specific thickness. The coated silicon wafer by the above photoresist has been patterned by selectively exposure in the MSL setup. The cured patterns are washed and heat treated at high temperature in order to 0 btain the net shape of the Ti02 pattern of polycrystalline rutile phase. It is observed this route is advantageous in terms of reduc¬ing curing dimension (curing width 14 f.lm) than the colloidal route (curing width more than 80 f.lm ) of fabrication of ceramics where the scattering factor greatly influences the dimensions of the feature size.
The key findings and future aspects are summarized in the Chapter 8.
The work reported in this thesis has been carried out by the candidate as part of the Ph.D. programme. He hopes that this would constitute a worthwhile contribution towards developing an MSL technique and its aspects in micro fabrication of polymer and ceramic structures of any complex shape and its possible applications in microdevices.
|
Page generated in 0.1291 seconds