Spelling suggestions: "subject:"microstructure effects"" "subject:"icrostructure effects""
1 |
Predictive Modeling for Ductile Machining of Brittle MaterialsVenkatachalam, Sivaramakrishnan 12 October 2007 (has links)
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.
|
2 |
Development of micro-grinding mechanics and machine toolsPark, Hyung Wook 04 January 2008 (has links)
In this study, the new predictive model for the micro-grinding process was developed by consolidating mechanical and thermal effects within the single grit interaction model at microscale material removal. The size effect of micro-machining was also included in the proposed model. In order to assess thermal effects, the heat partition ratio was experimentally calibrated and compared with the prediction of the Hahn model. Then, on the basis of this predictive model, a comparison between experimental data and analytical predictions was conducted in view of the overall micro-grinding forces in the x and y directions. Although there are deviations in the predicted micro-grinding forces at low depths of cut, these differences are reduced as the depth of cut increases. On the other hand, the optimization of micro machine tools was performed on the basis of the proposed design strategy. Individual mathematical modeling of key parameters such as volumetric error, machine working space, and static, thermal, and dynamic stiffness were conducted and supplemented with experimental analysis using a hammer impact test. These computations yield the optimal size of miniaturized machine tools with the technical information of other parameters.
|
3 |
Comportement homogénéisé des matériaux composites : prise en compte de la taille des éléments microstructuraux et des gradients de la déformation / Homogenized behavior of composite materials : taking into account the size of microstructure and the effects of strain gradientsTran, Thu Huong 23 October 2013 (has links)
L'objectif principal du travail réalisé au cours de la thèse consistera à proposer une démarche théorique rigoureuse visant à intégrer les éléments microstructuraux et les gradients de déformation dans une approche micromécanique. La thèse comportera deux volets : - Dans une première partie, on s'attachera à établir un cadre théorique rigoureux permettant d'intégrer les effets du gradient de la déformation et les longueurs caractéristiques de la microstructure sur le comportement effectif des matériaux composites - L'approche par développement asymptotique conduit à la résolution d'une succession problèmes d'élasticité tridimensionnelle posée sur une cellule élémentaire du milieu périodique. La résolution de ces problèmes d'élasticité, et par conséquent la détermination des propriétés effectives du composite, nécessite la mise en œuvre d'une méthode de résolution numérique. Dans cette seconde partie du travail, il s'agira de proposer une méthode de résolution basée sur la transformée de Fourier rapide (Méthode FFT) / The main objective of the thesis is to provide a rigorous theoretical approach to integrating the microstructural effects and deformation gradients in a micromechanical approach. The thesis has two components:- In the first part, we will focus on establishing a rigorous theoretical framework for integrating the effects of the deformation gradient and the characteristic lengths of the microstructure on the effective behavior of composite materials - The asymptotic expansion approach leads to the resolution of a series of three-dimensional elasticity problems posed on a unit cell of the periodic medium. Solving these problems of elasticity, and therefore the determination of the effective properties of the composite, requires the implementation of a numerical method. In this second part of the work, it will propose a resolution method based on fast Fourier transform (FFT method)
|
4 |
Optimizable Multiresolution Quadratic Variation Filter For High-frequency Financial DataSen, Aykut 01 February 2009 (has links) (PDF)
As the tick-by-tick data of financial transactions become easier to reach, processing that much of information in an efficient and correct way to estimate the integrated volatility gains importance. However, empirical findings show that, this much of data may become unusable due to microstructure effects. Most common way to get over this problem is to sample the data in equidistant intervals of calendar, tick or business time scales. The comparative researches
on that subject generally assert that, the most successful sampling scheme is a calendar time sampling which samples the data every 5 to 20 minutes. But this generally means throwing out more than 99 percent of the data. So it is obvious that a more efficient sampling method is needed. Although there are some researches on using alternative techniques, none of them is proven to be the best.
Our study is concerned with a sampling scheme that uses the information in different scales of frequency and is less prone to microstructure effects. We introduce a new concept of business intensity, the sampler of which is named Optimizable Multiresolution Quadratic Variation Filter. Our filter uses multiresolution analysis techniques to decompose the data into different scales and quadratic variation to build up the new business time scale. Our empirical findings show that our filter is clearly less prone to microstructure effects than any other common sampling method.
We use the classified tick-by-tick data for Turkish Interbank FX market. The market is closed for nearly 14 hours of the day, so big jumps occur between closing and opening prices. We also propose a new smoothing algorithm to reduce the effects of those jumps.
|
5 |
PREFERENTIAL MICROSTRUCTURAL PATHWAYS OF STRAIN LOCALIZATION WITHIN NICKEL AND TITANIUM ALLOYSJohn J Rotella (11811830) 20 December 2021 (has links)
<p>Modern structural materials
utilize tailored microstructures to retain peak performance within the most
volatile operating conditions. Features such as grain size, grain boundary (GB)
character and morphology and secondary phases are just a few of the tunable
parameters. By tailoring these types of microstructural features, the
deformation behavior of the material is also altered. The localization of
plastic strain directly correlated to material failure. Thus, a systematic
approach was utilized to understand the effect of microstructural features on
the localization of plastic deformation utilizing digital image correlation
(DIC). First, at the macroscopic scale, strain accumulation is known to form
parallel to the plane of maximum shear stress. The local deviations in the
deformation pathways at the meso-scale are investigated relative to the plane
of maximum shear stress. The deviations in the deformation pathways are
observed to be a function of the accumulated local plastic strain magnitude and
the grain size. Next, strains
characterized via DIC were used to
calculate a value of incremental slip on the active slip systems and identify
cases of slip transmission. The incremental slip was
calculated based on a Taylor-Bishop-Hill algorithm, which determined a
qualitative assessment of deformation on a given slip system, by satisfying
compatibility and identifying the stress state by the principle of virtual
work. Inter-connected slip bands, between neighboring grains, were shown to
accumulate more incremental slip (and associated strain) relative to slip bands
confined to a single grain, where slip transmission did not occur. These
results rationalize the role of grain clusters which lead to intense strain
accumulation and thus serve as potential sites for fatigue crack initiation.
Lastly, at GB interfaces, the effect of GB morphology (planar or serrated) on
the cavitation behavior was studied during elevated temperature dwell-fatigue
at 700 °C. The resulting γ′ precipitate structures were characterized near GBs
and within grains. Along serrated GBs coarsened and elongated <a>γ′ </a>precipitates formed and consequently created adjacent
regions that were denuded of γ′ precipitates. Dwell-fatigue experiments were
performed at low and high stress amplitudes which varied the amount of imparted
strain on the specimens.<a> Additionally, the regions
denuded of the γ′ precipitates were observed to localize strain and to be
initial sites of cavitation.</a> <a>These results present a
quantitative strain analysis between two GB morphologies, which provided the
micromechanical rationale for the increased proclivity for serrated GBs to form
cavities.</a></p>
|
Page generated in 0.0757 seconds