• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stainless steels fabricated by laser melting : Scaled-down structural hierarchies and microstructural heterogeneities

Saeidi, Kamran January 2016 (has links)
Additive manufacturing is revolutionizing the way of production and use of materials. The clear tendency for shifting from mass production to individual production of net-shape components has encouraged using selective laser melting (SLM) or electron beam melting (EBM). In this thesis, austenitic, duplex and martensitic stainless steel parts were fabricated by laser melting technique using fixed laser scanning parameters. The fabricated steel parts were characterised using XRD, SEM, TEM/STEM, SADP and EBSD techniques. Mechanical properties of the fabricated steel parts were also measured. The mechanism of the evolution of microstructure during laser melting as well as the mechanism of the effect of developed microstructure on the mechanical properties was investigated. It was found that the intense localized heating, non-uniform and asymmetric temperature gradients and subsequently fast cooling introduces unique high level structural hierarchies and microstructure heterogeneities in laser melted steel parts. A unique structural hierarchy from the millimetre scale melt pools down to the sub-micron/nano scale cellular sub-grains was observed. The cellular sub-grains were 0.5-1μm with Molybdenum enriched at the sub-grain boundaries in SLM 316L. The Mo enriched cell boundaries affected the chemical and microstructure stability of the post heat treated samples. Well dispersed and large concentration of dislocations around the cell boundaries and well distributed oxide nano inclusions, imposed large strengthening and hardening effect that led to relatively superior tensile strength (700 MPa), yield strength (456 MPa), and microhardness (325Hv) compared to those of HIP 316L steel. The in-situ formation of oxide nano inclusions provided a unique way for preparation of oxide dispersion-strengthened (ODS) steel in a single process. The formation of oxide nano inclusions in the very low oxygen partial pressure of laser chamber was thermodynamically explained. High concentration of nano size dislocation loops, formation of nitride phases along with nitrogen enriched islands and oxide nano inclusions lead to strong dislocation pinning effect which strengthened the laser melted duplex stainless steel with a total tensile strength of 1321 MPa, yield strength of 1214 MPa and microhardness of 450HV. The grade 420 stainless steel was laser melted in Ar and N2 atmosphere which also showed a two level hierarchy with nanometric martensite lathes embedded in parental austenite cellular grains. The Ar treated sample had relatively higher retained austenite, lower YS (680-790 MPa) and UTS (1120-1200 MPa) compared to those treated in N2 (YS= 770-1100 MPa, UTS=1520-1560 MPa). The mechanism of the effect of atmosphere on phase transformation was explained. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Submitted.</p>
2

Computational and Experimental Study of the Microstructure Evolution of Inconel 625 Processed by Laser Powder Bed Fusion

Mohammadpour, Pardis January 2023 (has links)
This study aims to improve the Additive Manufacturing (AM) design space for the popular multi-component Ni alloy Inconel 625 (IN625) thorough investigating the microstructural evolution, namely the solidification microstructure and the solid-state phase transformations during the Laser Powder Bed Fusion (LPBF) process. Highly non-equilibrium solidification and the complex reheating conditions during the LPBF process result in the formation of various types of solidification microstructures and grain morphologies which consequently lead to a wide range of mechanical properties. Understanding the melt’s thermal conditions, alloy chemistry, and thermodynamics during the rapid solidification and solid-state phase transformation in AM process will help to control material properties and even produce a material with specific microstructural features suited to a given application. This research helps to better understand the process-microstructure-property relationships of LPBF IN625. First, a set of simple but effective analytical solidification models were employed to evaluate their ability to predict the solidification microstructure in AM applications. As a case study, Solidification Microstructure Selection (SMS) maps were created to predict the solidification growth mode and grain morphology of a ternary Al-10Si-0.5Mg alloy manufactured by the LPBF process. The resulting SMS maps were validated against the experimentally obtained LPBF microstructure available in the literature for this alloy. The challenges, limitations, and potential of the SMS map method to predict the microstructural features in AM were comprehensively discussed. Second, The SMS map method was implemented to predict the solidification microstructure and grain morphology in an LPBF-built multi-component IN625 alloy. A single-track LPBF experiment was performed utilizing the EOSINT M280 machine to evaluate the SMS map predictions. The resulting microstructure was characterized both qualitatively and quantitatively in terms of the solidification microstructure, grain morphology, and Primary Dendrite Arm Spacing (PDAS). Comparing the experimentally obtained solidification microstructure to the SMS map prediction, it was found that the solidification mode and grain morphology were correctly predicted by the SMS maps. Although the formation of precipitates was predicted using the CALculation of PHAse Diagrams (CALPHAD) approach, it was not anticipated from the analytical solution results. Third, to further investigate the microsegregation and precipitation in IN625, Scanning Transmission Electron Microscopy (STEM) using Energy-Dispersive X-ray Spectroscopy (EDS), High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM), Scheil-Gulliver (with solute trapping) model, and DIffusion-Controlled TRAnsformations (DICTRA) method were employed. It was found that the microstructural morphology mainly consists of the Nickel-Chromium (gamma-FCC) dendrites and a small volume fraction of precipitates embedded into the interdendritic regions. The precipitates predicted with the computational method were compared with the precipitates identified via HAADF-STEM analysis inside the interdendritic region. The level of elemental microsegregation was overestimated in DICTRA simulations compared to the STEM-EDS results; however, a good agreement was observed between the Scheil and STEM-EDS microsegregation estimations. Finally, the spatial variations in mechanical properties and the underlying microstructural heterogeneity of a multi-layer as-built LPBF part were investigated to complete the process-structure-properties relationships loop of LPBF IN625. Towards this end, numerical thermal simulation, electron microscopy, nano hardness test, and a CALPHAD approach were utilized to investigate the mechanical and microstructural heterogeneity in terms of grain size and morphology, PDAS, microsegregation pattern, precipitation, and hardness along the build direction. It was found that the as-built microstructure contained mostly columnar (Nickel–Chromium) dendrites were growing epitaxially from the substrate along the build direction. The hardness was found to be minimum in the middle and maximum in the bottom layers of the build’s height. Smaller melt pools, grains, and PDAS and higher thermal gradients and cooling rates were observed in the bottom layers compared to the top layers. Microsegregation patterns in multiple layers were also simulated using DICTRA, and the results were compared with the STEM-EDS results. The mechanism of the formation of precipitates in different regions along the build direction and the precipitates’ corresponding effects on the mechanical properties were also discussed. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1146 seconds