• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed radiofrequency signal processing based on space-division multiplexing fibers

García Cortijo, Sergi 13 July 2020 (has links)
[EN] Space-division multiplexing fibers emerged as a promising solution to overcome the imminent capacity crunch of conventional singlemode fiber networks. Despite these fibers were initially conceived as distribution media for long-haul high-capacity digital communications, they can be applied to a wide variety of scenarios including centralized radio access networks for wireless communications, data-center interconnects, Microwave Photonics signal processing and fiber sensing. Particular interest is raised by emerging communications paradigms, such as 5G and The Internet of Things, which require a full integration between the optical fiber and the wireless networks segments. Microwave Photonics, discipline that focuses on the generation, processing, control and distribution of radiofrequency signals by photonics means, is called to play a decisive role. One of the major challenges that Microwave Photonics has to overcome to satisfy next-generation communication demands relates to the reduction of size, weight and power consumption while assuring broadband seamless reconfigurability and stability. There is one revolutionary approach that has however been left untapped in finding innovative ways to address that challenge: exploiting space, the last available degree of freedom for optical multiplexing. In this Thesis, we propose to exploit the inherent parallelism of multicore and few-mode fibers to implement sampled discrete true time delay lines, providing, in a single optical fiber, a compact and efficient approach for both Microwave Photonics signal distribution and processing. For the multicore fiber approach, we study the influence of the refractive index profile of each heterogeneous core on the propagation characteristics as to feature specific group delay and chromatic dispersion values. We designed and fabricated two different heterogeneous trench-assisted 7-core fibers that behave as sampled true time delay lines. While one of them was fabricated by using 7 different preforms to feature a plenary performance, the other one employed a single preform with the aim of minimizing fabrication costs. In the case of few-mode fibers, we propose the implementation of a tunable true time delay line by means of a custom-designed fiber with a set of inscribed long period gratings that act as mode converters to properly tailor the sample group delays. We designed and fabricated a true time delay line on a 4-mode fiber by inscribing 3 long period gratings at specific positions along the fiber link. As a proof-of-concept validation, we experimentally demonstrated different Microwave Photonics signal processing functionalities implemented over both multicore and few-mode fiber approaches. This work opens the way towards the development of distributed signal processing for microwave and millimeter wave signals in a single optical fiber. These true time delay lines can be applied to a wide range of Information and Communication Technology paradigms besides fiber-wireless communications such as broadband satellite communications, distributed sensing, medical imaging, optical coherence tomography and quantum communications. / [ES] La multiplexación por división espacial en fibras ópticas surgió como una solución prometedora al inminente colapso en la capacidad de las redes de fibra monomodo convencionales. Aunque estas fibras fueron concebidas inicialmente como medio de distribución en comunicaciones digitales de larga distancia y alta capacidad, pueden emplearse en una amplia variedad de escenarios, incluyendo redes de acceso radio centralizadas para comunicaciones inalámbricas, interconexiones en centros de datos, así como procesado de señal en Fotónica de Microondas y sensado en fibra. Los paradigmas de comunicaciones emergentes despiertan un interés particular, como 5G y el Internet de las Cosas, que requieren una integración total entre el segmento de red de fibra óptica y el inalámbrico. La Fotónica de Microondas, disciplina que se focaliza en la generación, procesado, control y distribución de señales de radiofrecuencia por medio de la fotónica, está destinada a jugar un papel decisivo. Uno de los mayores desafíos que la Fotónica de Microondas debe superar para satisfacer los requisitos de las nuevas generaciones de comunicaciones se basa en la reducción de tamaño, peso y consumo de potencia, mientras se garantiza reconfiguración y estabilidad de banda ancha. Encontramos aquí un enfoque revolucionario capaz de abordar este desafío de una manera innovadora que, sin embargo, no ha sido aprovechado en este contexto: la explotación del espacio, el último grado de libertad para multiplexación óptica. En esta Tesis, proponemos explotar el paralelismo inherente de las fibras ópticas multinúcleo y de pocos modos para implementar líneas de retardo en tiempo real muestreadas que proporcionan, en una sola fibra óptica, una solución compacta y eficiente tanto para distribución como para procesado de señales de Fotónica de Microondas. En el caso de fibras multinúcleo, estudiamos la influencia del perfil de índice de refracción de cada núcleo heterogéneo en las características de propagación para que exhiba unos valores concretos de retardo de grupo y dispersión cromática. Diseñamos y fabricamos dos fibras distintas de 7 núcleos con zanjas que se comportan como líneas de retardo en tiempo real muestreadas. Mientras que una de ellas se fabricó utilizando 7 preformas diferentes para garantizar un funcionamiento completo, la segunda se fabricó utilizando una única preforma con el objetivo de minimizar costes de fabricación. En el caso de fibras de pocos modos, proponemos la implementación de líneas de retardo en tiempo real sintonizables mediante el uso de una fibra específicamente diseñada y la inscripción de un conjunto de redes de difracción de periodo largo que actúan como conversores de modos para ajustar adecuadamente el retardo de grupo de las muestras. Diseñamos y fabricamos una línea de retardo en tiempo real en una fibra de 4 modos mediante la inscripción de 3 redes de difracción de periodo largo en posiciones concretas a lo largo de enlace de fibra. Como validación de prueba de concepto, demostramos experimentalmente diferentes funcionalidades de procesado de señal de Fotónica de Microondas implementadas en fibras multinúcleo y de pocos modos. Este trabajo abre el camino hacia el desarrollo del procesado de señal distribuido para señales de microondas y ondas milimétricas en una única fibra óptica. Además, las líneas de retardo en tiempo real desarrolladas pueden aplicarse a una amplia variedad de paradigmas de Tecnologías de la Información y Comunicaciones más allá de las comunicaciones radio sobre fibra, como es el caso de las comunicaciones de banda ancha por satélite, el sensado distribuido, la imagen médica, la tomografía óptica coherente y las comunicaciones cuánticas. / [CA] La multiplexació per divisió espacial en fibres òptiques va sorgir com una solució prometedora a l'imminent col·lapse en la capacitat de les xarxes de fibra monomode convencionals. Encara que estes fibres foren concebudes inicialment com a mitjà de distribució en comunicacions digitals de llarga distància i alta capacitat, poden emprar-se en una àmplia varietat d'escenaris, incloent xarxes d'accés radio centralitzades per a comunicacions sense fils, interconnexions en centres de dades, així com processat de senyal en Fotònica de Microones i sensat en fibra. Els paradigmes de comunicacions emergents desperten un interès particular, com el 5G i la Internet de les Coses, que requereixen una integració total entre els segments de xarxa de fibra òptica i el de sense fils. La Fotònica de Microones, disciplina que es focalitza en la generació, processat, control i distribució de senyals de radiofreqüència per mitjà de la fotònica, està destinada a jugar un paper decisiu. Un dels majors desafiaments que la Fotònica de Microones ha de superar per satisfer els requisits de les noves generacions de comunicacions es basa en la reducció de grandària, pes i consum de potència, mentre es garanteix reconfiguració i estabilitat de banda ampla Trobem ací un enfocament revolucionari capaç d'abordar aquest desafiament d'una manera innovadora que, no obstant això, no ha sigut aprofitat encara en este context: la explotació de l'espai, l'últim grau de llibertat per a multiplexat òptic. En aquesta Tesi, proposem explotar el paral·lelisme inherent de les fibres òptiques multinucli i de pocs modes per a implementar línies de retard en temps real de mostres discretes que proporcionen, en una sola fibra òptica, una solució compacta i eficient tant per a distribució com per a processat de senyals de Fotònica de Microones. En el cas de fibres multinucli, estudiem la influència del perfil d'índex de refracció de cada nucli heterogeni en les característiques de propagació perquè exhibisca uns valors concrets de retard de grup i dispersió cromàtica. Dissenyem i fabriquem dues fibres distintes de 7 nuclis amb rases que es comporten com a línies de retard en temps real mostrejades. Mentre que una d'elles es va fabricar utilitzant 7 preformes diferents per a garantir un funcionament complet, la segona va fabricar-se utilitzant una única preforma amb l'objectiu de minimitzar costos de fabricació. En el cas de fibres de pocs modes, proposem la implementació de línies de retard en temps real sintonitzables mitjançant l'ús d'una fibra específicament dissenyada i la inscripció d'un conjunt de xarxes de difracció de període llarg que actuen com a convertidors de modes per tal d'ajustar adequadament el retard de grup de les mostres. Dissenyem i fabriquem una línia de retard en temps real en una fibra de 4 modes mitjançant la inscripció de 3 xarxes de difracció de període llarg en posicions concretes al llarg de l'enllaç de fibra. Com a validació de proba de concepte, demostrem experimentalment diferents funcionalitats de processat de senyal de Fotònica de Microones implementades en fibres multinucli i de pocs modes. Aquest treball obri el camí cap al desenvolupament del processat de senyal distribuït per a senyals de microones i ones mil·limètriques en una única fibra òptica. A més, aquestes línies de retard en temps real poden aplicar-se a una àmplia varietat de paradigmes de Tecnologies de la Informació i Comunicacions més enllà de les comunicacions radio sobre fibra, com es el cas de les comunicacions de banda ampla per satèl·lit, el sensat distribuït, la imatge mèdica, la tomografia òptica coherent i les comunicacions quàntiques. / Agradezco al Ministerio de Economía y Competitividad del Gobierno de España por la financiación recibida mediante la ayuda FPI. / García Cortijo, S. (2020). Distributed radiofrequency signal processing based on space-division multiplexing fibers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147858 / TESIS
2

Design and Analysis of Integrated Optic Waveguide Delay Line Phase Shifters for Microwave Photonic Application

Honnungar, Rajini V January 2013 (has links) (PDF)
Microwave Photonics(MWP) has been defined as the study of photonic devices which operate at microwave frequencies and also their applications to microwave and optical systems. One or more electrical signals at microwave frequencies are transported over the optic link ,with electrical to optical and optical to electrical conversion on the transmission and receiving side respectively. The key advantages of microwave photonic links over conventional electrical transmission systems such as coaxial cables or waveguides ,includes reduced size, weight and cost, immunity to electromagnetic interference ,low dispersion and high data transfer capacity. Integrated Optics is the name given to a new generation of opto-electronic systems in which the familiar wires and cables are replaced by light-waveguiding optical fibers, and conventional integrated circuits are replaced by optical integrated circuits (OICs).Microwave Photonics with photonic integration can add the benefits of reduction in system size, losses, short path lengths leading to more efficient cost effective systems. In this thesis, a new approach for using 1-D linear arrays of curved waveguides as delay lines is presented. We propose a design for a passive phase shifter obtained by curved waveguide delay lines. The modulated RF signal obtains the phase shift in the optical domain which is transferred to the RF signal by heterodyning techniques .This phase shift is independent of the RF frequency and hence the Beam squinting which occurs in the conventional RF phase shifter systems is avoided in the proposed system. Switching between different lengths of the bent/curved waveguides can produce variable phase shifts ranging from 0 to 2 radians. The use of curved waveguides for delay generation and optimization of various parameters are the main topics of the research problem. The need for delay line is large and most of these were implemented previously using long optical fiber cables. More precise delays could be obtained by using waveguide delay lines as compared to fiber delay lines. Waveguides paves way for design in smaller dimensions ranging from m to nm in integrated optics. The differential phase shift for a signal propagating in a waveguide from waveguide theory is given as which clearly indicates that the differential phase shifts could be obtained in accordance with differential path lengths Δl with β as the propagation constant. S-bend waveguide sections of different lengths along with straight waveguide as reference for each section are employed. The phase delay is passively obtained by a differential path length change, where various phase shift values can be obtained by switching between different differential path lengths. Since the optical phase delay generated is in- dependent of the input RF frequency. A shift in the RF frequency, at the input will not change the phase or beam pointing angle when the phase shifter is employed for beam pointing in case of Phased Array Antenna applications. A 1-bit phase shifter is the firrst step in the design which could be further extended to n-bit phase shifter. Here 1-bit or n-bit ,is one where n can take any integer value. Each bit is composed of a reference phase signal pathway and a delayed phase signal pathway. When the optical signal goes every single bit through the reference phase the phase shift is ‘0’ radians ,the other is through the delayed path which is . For every n-bit, 2n delays can be obtained. For the 1-bit,2 delays are obtained. Switching between the path lengths is done using the directional coupler switches. Th optimization of different parameters of the S-bend waveguide delay line has been realized and studied. The design and optimisation of a 1-bit optical RF phase shifter is discussed which could be extended to n-bit phase shifters. These S-bends are studied analytically. Beam Propagation Method (BPM)is employed for modeling and simulation of the proposed device. An interferometric configuration is considered for practical measurement of optical phase. In this configuration the phase change is translated into amplitude or intensity measurement. One of the arms of the Maczehdner Interferometer has no path length change while the other arm has an S-bend structure which provides the path length difference as compared to the reference path, and hence produces the necessary phase shift at the output of the interferometer as required. By changing the path length difference between the two arms of the interferometer ,a change in intensity is produced at the output of the interferometer. In this study, integrated optic curved waveguide delay line phase shifters are designed and analyzed, considering the Titanium Di used Lithium Niobate Technology. This is because it has good electro-optic properties necessary for designing switches used for switching between delay segments. Practical parameters that can be fabricated are employed in the design and simulation studies reported here. Fabrication is also done using the Lithium Niobate Technology. However the fabrication studies are excluded from the main stream, as further fabrication studies are necessary to realise the actual devices de- signed. The fabrication aspects are left as scope for further development. The fabricated devices are shown as appendix to the thesis. Organisation of the thesis Chapter 1 gives the introduction to the fields of Microwave Photonics and Integrated optics and its applications. Chapter 2discusses the curved waveguide theory and design with coverage of materials and methods employed in the proposed system. Chapter 3 discusses the different types of delay lines and the design of the 1-bit phase shifter which can be extended to the design of a n-bit phase shifter with both analytical and simulation results. Chapter 4 discusses the method of phase measurement for the n-bit phase shifter and the possible applications where the phase shifter could be employed. Chapter 5 discusses conclusions and future work in the proposed area of work. Appendix A discusses the loss calculations for the Cosine S-bend waveguide. Appendix B gives the fabrication details. The references form the end part of the thesis.
3

Design and fabrication of customized fiber gratings to improve the interrogation of optical fiber sensors

Ricchiuti, Amelia Lavinia 23 June 2016 (has links)
[EN] Fiber grating sensors and devices have demonstrated outstanding capabilities in both telecommunications and sensing areas, due to their well-known advantageous characteristics. Therefore, one of the most important motivations lies in the potential of customized fiber gratings to be suitably employed for improving the interrogation process of optical fiber sensors and systems. This Ph.D. dissertation is focused on the study, design, fabrication and performance evaluation of customized fiber Bragg gratings (FBGs) and long period gratings (LPGs) with the double aim to present novel sensing technologies and to enhance the response of existing sensing systems. In this context, a technique based on time-frequency domain analysis has been studied and applied to interrogate different kind of FBGs-based sensors. The distribution of the central wavelength along the sensing structures has been demonstrated, based on a combination of frequency scanning of the interrogating optical pulse and optical time-domain reflectometry (OTDR), allowing the detection of spot events with good performance in terms of measurand resolution. Moreover, different customized FBGs have been interrogated using a technology inspired on the operation principle of microwave photonics (MWP) filters, enabling the detection of spot events using radio-frequency (RF) devices with modest bandwidth. The sensing capability of these technological platforms has been fruitfully employed for implementing a large scale quasi-distributed sensor, based on an array of cascaded FBGs. The potentiality of LPGs as fiber optic sensors has also been investigated in a new fashion, exploiting the potentials of MWP filtering techniques. Besides, a novel approach for simultaneous measurements based on a half-coated LPG has been proposed and demonstrated. Finally, the feasibility of FBGs as selective wavelength filters has been exploited in sensing applications; an alternative approach to improve the response and performance of Brillouin distributed fiber sensors has been studied and validated via experiments. The performance of the reported sensing platforms have been analyzed and evaluated so as to characterize their impact on the fiber sensing field and to ultimately identify the use of the most suitable technology depending on the processing task to be carried out and on the final goal to reach. / [ES] Los sensores y dispositivos en fibra basados en redes de difracción han mostrado excepcionales capacidades en el ámbito de las telecomunicaciones y del sensado, gracias a sus excelentes propiedades. Entre las motivaciones más estimulantes destaca la posibilidad de fabricar redes de difracción ad-hoc para implementar y/o mejorar las prestaciones de los sensores fotónicos. Esta tesis doctoral se ha enfocado en el estudio, diseño, fabricación y evaluación de las prestaciones de redes de difracción de Bragg (FBGs) y de redes de difracción de periodo largo (LPGs) personalizadas con el fin de desarrollar nuevas plataformas de detección y a la vez mejorar la respuesta y las prestaciones de los sensores fotónicos ya existentes. En este contexto, una técnica basada en el análisis tiempofrecuencia se ha estudiado e implementado para la interrogación de sensores en fibra basados en varios tipos y modelos de FBGs. Se ha analizado la distribución de la longitud de onda central a lo largo de la estructura de sensado, gracias a una metodología que conlleva el escaneo en frecuencia del pulso óptico incidente y la técnica conocida como reflectometria óptica en el dominio del tiempo (OTDR). De esta manera se ha llevado a cabo la detección de eventos puntuales, alcanzando muy buenas prestaciones en términos de resolución de la magnitud a medir. Además, se han interrogado varias FBGs a través de una técnica basada en el principio de operación de los filtros de fotónica de microondas (MWP), logrando así la detección de eventos puntuales usando dispositivos de radio-frecuencia (RF) caracterizados por un moderado ancho de banda. La capacidad de sensado de estas plataformas tecnológicas ha sido aprovechada para la realización de un sensor quasi-distribuido de gran alcance, formado por una estructura en cascada de muchas FBGs. Por otro lado, se han puesto a prueba las capacidades de las LPGs como sensores ópticos según un enfoque novedoso; para ello se han aprovechados las potencialidades de los filtros de MWP. Asimismo, se ha estudiado y demostrado un nuevo método para medidas simultáneas de dos parámetros, basado en una LPG parcialmente recubierta por una película polimérica. Finalmente, se ha explotado la viabilidad de las FBGs en cuanto al filtrado selectivo en longitud de onda para aplicaciones de sensado; para ello se ha propuesto un sistema alternativo para la mejora de la respuesta y de las prestaciones de sensores ópticos distribuidos basados en el scattering de Brillouin. En conclusión, se han analizado y evaluado las prestaciones de las plataformas de sensado propuestas para caracterizar su impacto en el ámbito de los sistemas de detección por fibra y además identificar el uso de la tecnología más adecuada dependiendo de la tarea a desarrollar y del objetivo a alcanzar. / [CA] Els sensors i dispositius en fibra basats en xarxes de difracció han mostrat excepcionals capacitats en l'àmbit de les telecomunicacions i del sensat, gràcies a les seus excel¿lents propietats. Entre les motivacions més estimulants destaca la possibilitat de fabricar xarxes de difracció ad-hoc per a implementar i/o millorar les prestacions de sensors fotònics. Esta tesi doctoral s'ha enfocat en l'estudi, disseny, fabricació i avaluació de les prestacions de xarxes de difracció de Bragg (FBGs) i de xarxes de difracció de període llarg (LPGs) personalitzades per tal de desenvolupar noves plataformes de detecció i al mateix temps millorar la resposta i les prestacions dels sensors fotònics ja existents. En este context, una tècnica basada en l'anàlisi temps-freqüència s'ha estudiat i implementat per a la interrogació de sensors en fibra basats en diversos tipus i models de FBGs. S'ha analitzat la distribució de la longitud d'ona central al llarg de l'estructura de sensat, gràcies a una metodologia que comporta l'escaneig en freqüència del pols òptic incident i la tècnica coneguda com reflectometria òptica en el domini del temps (OTDR). D'esta manera s'ha dut a terme la detecció d'esdeveniments puntuals, aconseguint molt bones prestacions en termes de resolució de la magnitud a mesurar. A més, s'han interrogat diverses FBGs a través d'una tècnica basada en el principi d'operació dels filtres de fotònica de microones (MWP), aconseguint així la detecció d'esdeveniments puntuals utilitzant dispositius de ràdio-freqüència (RF) caracteritzats per un moderat ample de banda. La capacitat de sensat d'aquestes plataformes tecnològiques ha sigut aprofitada per a la realització d'un sensor quasi-distribuït a llarga escala, format per una estructura en cascada de moltes FBGs. D'altra banda, s'han posat a prova les capacitats de les LPGs com a sensors òptics segons un enfocament nou; per a això s'han aprofitat les potencialitats dels filtres de MWP. Així mateix, s'ha estudiat i demostrat un nou mètode per a mesures simultànies de dos paràmetres, basat en una LPG parcialment recoberta per una pel¿lícula polimèrica. Finalment, s'ha explotat la viabilitat de les FBGs pel que fa al filtrat selectiu en longitud d'ona per a aplicacions de sensat; per això s'ha proposat un sistema alternatiu per a la millora de la resposta i de les prestacions de sensors òptics distribuïts basats en el scattering de Brillouin. S'han analitzat i avaluat les prestacions de les plataformes de sensat propostes per a caracteritzar el seu impacte en l'àmbit dels sistemes de detecció per fibra i a més identificar l'ús de la tecnologia més adequada depenent de la tasca a desenvolupar i de l'objectiu a assolir. / Ricchiuti, AL. (2016). Design and fabrication of customized fiber gratings to improve the interrogation of optical fiber sensors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/66343 / TESIS / Premios Extraordinarios de tesis doctorales

Page generated in 0.0689 seconds