Spelling suggestions: "subject:"microwave radiometry"" "subject:"microwave gradiometry""
1 |
Measurements and analysis of the microwave dielectric properties of human and animal tissuesGorton, Andrew James January 1996 (has links)
No description available.
|
2 |
Radio Frequency Interference Characterization and Detection in L-band Microwave RadiometryAksoy, Mustafa January 2015 (has links)
No description available.
|
3 |
A Bayesian method for retrieval of Greenland ice sheet Internal temperature ultra- wideband software-defined microwave radiometer (UWBRAD) measurementsDuan, Yuna 23 September 2022 (has links)
No description available.
|
4 |
Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity missionSabia, Roberto 13 October 2008 (has links)
L’oceanografia per satèl•lit ha esdevingut una integració consolidada de les tècniques convencionals de monitorització in situ dels oceans. Un coneixement precís dels processos oceanogràfics i de la seva interacció és fonamental per tal d’entendre el sistema climàtic. En aquest context, els camps de salinitat mesurats regularment constituiran directament una ajuda per a la caracterització de les variacions de la circulació oceànica global. La salinitat s’utilitza en models oceanogràfics predictius, pero a hores d’ara no és possible mesurar-la directament i de forma global.
La missió Soil Moisture and Ocean Salinity (SMOS) (en català, humitat del sòl i salinitat de l’oceà) de l’Agència Espacial Europea pretén omplir aquest buit mitjançant la implementació d’un satèl•lit capaç de proveir aquesta informació sinòpticament i regular.
Un nou instrument, el Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) (en català, radiòmetre d’observació per microones per síntesi d’obertura), ha estat desenvolupat per tal d’observar la salinitat de la superfície del mar (SSS) als oceans a través de l’adquisició d’imatges de la radiació de microones emesa al voltant de la freqüència de 1.4 GHz (banda L). SMOS portarà el primer radiòmetre orbital, d’òrbita polar, interferomètric 2D i es llençarà a principis de 2009.
Així com a qualsevol altra estimació de paràmetres geofísics per teledetecció, la recuperació de la salinitat és un problema invers que implica la minimització d’una funció de cost. Per tal d’assegurar una estimació fiable d’aquesta variable, la resta de paràmetres que afecten a la temperatura de brillantor mesurada s’ha de tenir en compte, filtrar o quantificar. El producte recuperat seran doncs els mapes de salinitat per a cada passada del satèl•lit sobre la Terra.
El requeriment de precisió proposat per a la missió és de 0.1 ‰ després de fer el promig en finestres espaciotemporals de 10 dies i de 20x20.
En aquesta tesi de doctorat, diversos estudis s’han dut a terme per a la determinació del balanç d’error de la salinitat de l’oceà en el marc de la missió SMOS. Les motivacions de la missió, les condicions de mesura i els conceptes bàsics de radiometria per microones es descriuen conjuntament amb les principals característiques de la recuperació de la salinitat.
Els aspectes de la recuperació de la salinitat que tenen una influència crítica en el procés d’inversió són:
• El biaix depenent de l’escena en les mesures simulades,
• La sensibilitat radiomètrica (soroll termal) i la precisió radiomètrica,
• La definició de la modelització directa banda L
• Dades auxiliars, temperatura de la superfície del mar (SST) i velocitat del vent, incerteses,
• Restriccions en la funció de cost, particularment en el terme de salinitat, i
• Promig espacio-temporal adequat.
Un concepte emergeix directament de l’enunciat del problema de recuperació de la salinitat: diferents ajustos de l’algoritme de minimització donen resultats diferents i això s’ha de tenir en compte. Basant-se en aquesta consideració, la determinació del balanç d’error s’ha aproximat progressivament tot avaluant l’extensió de l’impacte de les diferents variables, així com la parametrització en termes d’error de salinitat.
S’ha estudiat l’impacte de diverses dades auxiliars provinents de fonts diferents sobre l’error SSS final. Això permet tenir una primera impressió de l’error quantitatiu que pot esperar-se en les mesures reals futures, mentre que, en un
altre estudi, s’ha investigat la possibilitat d’utilitzar senyals derivats de la reflectometria per tal de corregir les incerteses de l’estat del mar en el context SMOS.
El nucli d’aquest treball el constitueix el Balanç d’Error SSS total. S’han identificat de forma consistent les fonts d’error i s’han analitzat els efectes corresponents en termes de l’error SSS mig en diferents configuracions
d’algoritmes.
Per una altra banda, es mostren els resultats d’un estudi de la variabilitat horitzontal de la salinitat, dut a terme utilitzant dades d’entrada amb una resolució espacial variable creixent. Això hauria de permetre confirmar la capacitat de la SSS recuperada per tal reproduir característiques oceanogràfiques mesoscàliques.
Els principals resultats i consideracions derivats d’aquest estudi contribuiran a la definició de les bases de l’algoritme de recuperació de la salinitat. / Satellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans.
Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally.
The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information.
A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009.
Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified.
The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes.
In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features.
The salinity retrieval issues whose influence is critical in the inversion procedure are:
• Scene-dependent bias in the simulated measurements,
• Radiometric sensitivity (thermal noise) and radiometric accuracy,
• L-band forward modeling definition,
• Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties,
• Constraints in the cost function, especially on salinity term, and
• Adequate spatio-temporal averaging.
A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error.
The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated.
The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations.
Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features.
Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.
|
5 |
Remote Sensing of Sea Ice with Wideband Microwave RadiometryDemir, Oguz January 2021 (has links)
No description available.
|
6 |
The Measurement of Internal Temperature Anomalies in the Body Using Microwave Radiometry and Anatomical Information: Inference Methods and Error ModelsSobers, Tamara V 01 January 2012 (has links) (PDF)
The ability to observe temperature variations inside the human body may help in detecting the presence of medical anomalies. Abnormal changes in physiological parameters (such as metabolic and blood perfusion rates) cause localized tissue temperature change. If the anatomical information of an observed tissue region is known, then a nominal temperature profile can be created using the nominal physiological parameters. Temperature-varying radiation emitted from the human body can be captured using microwave radiometry and compared to the expected radiation from nominal temperature profiles to detect anomalies. Microwave radiometry is a passive system with the ability to capture radiation from tissue up to several centimeters deep into the body. Our proposed method is to use microwave radiometry in conjunction with another imaging modality (such as ultrasound) that can provide the anatomical information needed to generate nominal profiles and improve detection of temperature anomalies. An inference framework is developed for using the nominal temperature profiles and radiometric weighting functions obtained from electromagnetic simulation software, to detect and estimate the location of temperature anomalies. The effects on inference performance of random and systematic deviations from nominal tissue parameter values in normal tissue are discussed and analyzed.
|
7 |
Microwave Radiometer (MWR) Evaluation of Multi-Beam Satellite Antenna Boresight Pointing Using Land-Water Crossings, for the Aquarius/SAC-D MissionClymer, Bradley 01 January 2015 (has links)
This research concerns the CONAE Microwave Radiometer (MWR), on board the Aquarius/SAC-D platform. MWR's main purpose is to provide measurements that are simultaneous and spatially collocated with those of NASA's Aquarius radiometer/scatterometer. For this reason, knowledge of the MWR antenna beam footprint geolocation is crucial to mission success. In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, using calculated MWR instantaneous field of view (IFOV) centers, provided in the CONAE L-1B science data product. This procedure compares L-1B MWR IFOV centers at land/water crossings against high-resolution coastline maps. MWR IFOV locations versus time are computed from knowledge of the satellite's instantaneous location relative to an earth-centric coordinate system (provided by on-board GPS receivers), and a priori measurements of antenna gain patterns and mounting geometry. Previous conical scanning microwave radiometer missions (e.g., SSM/I) have utilized observation of rapid change in brightness temperatures (T_B) to estimate the location of land/water boundaries, and subsequently to determine the antenna beam-pointing accuracy. In this thesis, results of an algorithm to quantify the geolocation error of MWR beam center are presented, based upon two-dimensional convolution between each beam's gain pattern and land-water transition. The analysis procedures have been applied to on-orbit datasets that represent land-water boundaries bearing specific desirable criteria, which are also detailed herein. The goal of this research is to gain a better understanding of satellite radiometer beam-pointing error and thereby to improve the geolocation accuracy for MWR science data products.
|
8 |
Achieving Efficient Spectrum Usage in Passive and Active SensingWang, Huaiyi 18 May 2017 (has links)
No description available.
|
9 |
Μελέτη χρήσης διηλεκτρικών υλικών για τη βελτιστοποίηση των απεικονιστικών ιδιοτήτων της εστιασμένης μικροκυματικής ραδιομετρίαςΤριχόπουλος, Γεώργιος 20 February 2009 (has links)
Στην παρούσα εργασία γίνεται μελέτη της χρήσης διηλεκτρικών υλικών για τη βελτίωση των απεικονιστικών ιδιοτήτων της εστιασμένης μικροκυματικής ραδιομετρίας, όπωςείναι η χωρική διακριτική ικανότητα και το βάθος διείσδυσης της ακτινοβολίας. Με τη βοήθεια του λογισμικού HFSS (High Frequency Structure Simulation) το οποίο βασίζεται στη μέθοδο των πεπερασμένων στοιχείων, μελετώνται διάφορες υλοποιήσεις με τη χρήση των διηλεκτρικών. Τοποθετούνται διηλεκτρικά στρώματα βηματικού δείκτη διάθλασης γύρω από το κεφάλι και διηλεκτρικά στρώματα γύρω από την κεραία. Επίσης σε μια άλλη προσέγγιση του προβλήματος, το κεφάλι τοποθετείται σε ομοιογενή σφαίρα διηλεκτρικού ώστε να επιτευχθεί ευκολότερη και πιο αξιόπιστη εστίαση. Τέλος εξετάζεται η περίπτωση λειτουργίας του MiRaIS με τη χρήση κατευθυντήριας κεραίας τεχνολογίας microstrip, αντί για παγκατευθυντικό δίπολο. Σε κάθε προσέγγιση αξιολογούνται και συγκρίνονται τα αριθμητικά αποτελέσματα όλων των συχνοτήτων που δοκιμάζονται (500MHz-2GHz). / -
|
10 |
Estimation Of Oceanic Rainfall Using Passive And Active Measurements From Seawinds Spaceborne Microwave SensorAhmad, Khalil Ali 01 January 2007 (has links)
The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOS-II) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOS-II satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT / SeaWinds Radiometer (QRad / SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passive-only, as well as the combined active / passive rain estimates from SeaWinds are presented, and comparisons are made with the standard TRMM rain data products. Results demonstrate that SeaWinds rain measurements are in good agreement with the independent microwave rain observations obtained from TMI. Further, by applying a threshold on the retrieved rain rates, SeaWinds rain estimates can be utilized as a rain flag. In order to evaluate the performance of the SeaWinds flag, comparisons are made with the Impact based Multidimensional Histogram (IMUDH) rain flag developed by JPL. Results emphasize the powerful rain detection capabilities of the SeaWinds retrieval algorithm. Due to its broad swath coverage, SeaWinds affords additional independent sampling of the oceanic rainfall, which may contribute to the future NASA's Precipitation Measurement Mission (PMM) objectives of improving the global sampling of oceanic rain within 3 hour windows. Also, since SeaWinds is the only sensor onboard QuikSCAT, the SeaWinds rain estimates can be used to improve the flagging of rain-contaminated oceanic wind vector retrievals. The passive-only rainfall retrieval algorithm (QRad / SRad) has been implemented by JPL as part of the level 2B (L2B) science data product, and can be obtained from the Physical Oceanography Distributed Data Archive (PO.DAAC).
|
Page generated in 0.0596 seconds