• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The geochemistry of submarine hydrothermal fluids and particles

Ludford, Emma Marianne January 1996 (has links)
No description available.
2

Structure and evolution of an oceanic megamullion on the Mid-Atlantic ridge at 27N̊ /

McKnight, Amy R. January 1900 (has links)
Thesis (S.M.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 44-48).
3

Hydrography and heat flux in hydrothermal regions

Wilson, Cara, 1967- 12 February 1997 (has links)
Graduation date: 1997 / Best scan available for figures. Original figures are black and white photocopies.
4

The evolution of lithospheric deformation and crustal structure from continental margins to oceanic spreading centers /

Behn, Mark Dietrich, January 1900 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2002. / "Joint Program in Oceanography/Applied Ocean Science and Engineering."--Cover. "June 2002." Funding was provided by NASA through grants NAG5-3264, NAG5-4806, NAG5-11113 and NAG5-9143 and by a National Defense Science and Engineering Graduate Fellowship. Includes bibliographical references (p. 221-243).
5

Biological sulfur reactions and the influence on fluid flow at mid-ocean ridge hydrothermal systems

Crowell, Brendan William. January 2007 (has links)
Thesis (M. S.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2008. / Lowell, Robert, Committee Chair ; Newman, Andrew, Committee Member ; Peng, Zhigang, Committee Member.
6

Geophysical investigations of the Reykjanes Ridge and Kolbeinsey Ridge seafloor spreading centers

Appelgate, Bruce January 1995 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 77-86). / Microfiche. / ix, 86 leaves, bound ill. (some col.) 29 cm
7

Boundary layer dynamics and deep ocean mixing in Mid-Atlantic Ridge canyons

Dell, Rebecca Walsh January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 160-163). / Physical oceanographers have known for several decades the total amount of abyssal mixing and upwelling required to balance the deep-water formation, but are still working to understand the mechanisms and locations-how and where it happens. From observational studies, we know that areas of rough topography are important and the hundreds of Grand-Canyon sized canyons that line mid-ocean ridges have particularly energetic mixing. To better understand the mechanisms by which rough topography translates into energetic currents and mixing, I studied diffusive boundary layers over varying topography using theoretical approaches and idealized numerical simulations using the ROMS model. In this dissertation, I show a variety of previously unidentified characteristics of diffusive boundary layers that are likely relevant for understanding the circulation of the abyssal ocean. These boundary layers share many important properties with observed flows in abyssal canyons, like increased kinetic energy near topographic sills and strong currents running from the abyssal plains up the slopes of the mid-ocean ridges toward their crests. They also have a previously unknown capacity to accelerate into overflows for a variety of oceanographically relevant shapes and sizes of topography. This acceleration happens without external forcing, meaning such overflows may be ubiquitous in the deep ocean. These boundary layers also can force exchange of large volumes of fluid between the relatively unstratified boundary layer and the stratified far-field fluid, altering the stratification far from the boundary. We see these effects in boundary layers in two- and three-dimensions, with and without rotation. In conclusion, these boundary layer processes, though previously neglected, may be a source of a dynamically important amount of abyssal upwelling, profoundly affecting predictions of the basin-scale circulation. This type of mechanism cannot be captured by the kind of mixing parameterizations used in current global climate models, based on a bottom roughness. Therefore, there is much work still to do to better understand how these boundary layers behave in more realistic contexts and how we might incorporate that understanding into climate models. / by Rebecca Walsh Dell. / Ph.D.
8

Seismic tomography in the source region of the May 29th 2008 earthquake-aftershock-sequence in southwest Iceland / Seismisk tomografi på efterskalvssekvensen den 29:e maj 2008 i sydvästra Island

Berglund, Karin January 2012 (has links)
On May 29th 2008 two earthquakes with moment magnitude of Mw ~6 occurred in the southwestern part of Iceland. The second earthquake struck within only seconds after the first, on a fault ~5 km west from the first fault. The aftershock sequence was recorded by 14 seismic stations during the subsequent 34 days. The recorded earthquakes were detected and located with a Coalesence Microseismic Mapping (CMM) technique. The output data from this program has been used as basis for the tomography algorithm PStomo_eq, which simultaneously inverts for both P- and S-wave velocities and relocates the events. Within the study area of 46×36 km the three-dimensional velocity structure has, successfully but not conclusively, been modeled to depths of ~10 km. The Vp/Vs ratio varies from 1.74 to 1.82 within the study area. The velocity increases with depth starting from 2 km where the P-wave velocity is 4.6 km/s and the S-wave velocity is 2.7 km/s, at a depth of 10 km the P-wave velocity is 6.9 km/s and S-wave velocity is 4.0 km/s. In the horizontal slices a high velocity area is seen in the northwestern part of model. This is interpreted to be caused by a magma body rising up from below and lithifying at high pressure. From cross-sections a large low velocity zone is seen in the western part of model area concentrated above the seismicity. The low velocity anomaly is found between depths of 2 km to 4 km, stretching from 21.5° to 21.2° W. It is interpreted to be caused by high porosity within the area. The depth to the brittle crust is increasing from the western part of the model towards the eastern part, right in the middle of the model it abruptly decreases again. The depth to the base of the brittle crust is increasing from 7 km in west to 9 km in the middle of model. / Den 29:e maj 2008 inträffade två jordbävningar med magnitud Mw ~6 på sydvästra Island. Den första jordbävningen följdes tätt av en andra jordbävning på en förkastning ~5 km väster om den första. Påföljande efterskalvssekvens registrerades av 14 seismiska stationer under 34 dagar efter huvudskalven. De registrerade skalven har detekterats och lokaliserats med en Coalesence Microseismic Mapping (CMM) teknik. Utdata från detta program har använts som grund för tomografin som genomförts med PStomo_eq, en algoritm som inverterar oberoende för både P- och S-vågs hastigheter och samtidigt omlokaliserar eventen. Inom det undersökta området på 46×36 km har en tredimensionell hastighetsmodell, om än inte slutgiltigt, modellerats för djup ned till 10 km. Vp/Vs kvoten varierar mellan 1.74 och 1.82 inom studieområdet. Hastigheterna ökar med ökande djup, på ett djup av 2 km är P-vågs hastigheten 4.6 km/s och S-vågs hastigheten 2.7 km/s och vid 10 km är P-vågs hastigheten 6.9 km/s och S-vågs hastigheten 4.0 km/s. I den nordvästra delen av modellen återfinns en höghastighetszon. Denna tolkas vara orsakad av en magma kropp som stigit och kristalliserat under högt tryck. De vertikala tvärsnitten visar en låghastighetsanomali i västra delen av modellen, koncentrerat ovan seismiciteten. Denna anomali sträcker sig från ett djup på 2 km ned till 4 km, från 21.5° till 21.2° V. Den tolkas vara orsakad av en hög grad av porositet. Djupet för den bräckliga jordskorpan ökar från väster till öster i modellen, för att i mitten abrupt minska igen. Basen av den bräckliga skorpan ökar från 7 km i väst till 9 km i mitten av modellen.
9

Styles of detachment faulting at the Kane Fracture Zone oceanic core complex, 23°N Mid-Atlantic Ridge

Hansen, Lars. January 2007 (has links)
Thesis (M.S.)--University of Wyoming, 2007. / Title from PDF title page (viewed on Mar. 4, 2009). Includes bibliographical references (p. 50-59).
10

Crustal accretion and evolution at slow and ultra-slow spreading mid-ocean ridges

Hosford, Allegra January 2001 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2001. / Page 250 blank. / Includes bibliographical references. / Half of the ocean crust is formed at spreading centers with total opening rates less than 40 km/Myr. The objective of this Thesis is to investigate temporal variations in active ridge processes and crustal aging at slow-spreading centers by comparing axial crustal structure with that on conjugate flanks of the slow-spreading Mid-Atlantic Ridge (MAR) (full rate, 20 km/Myr) and the ultra-slow spreading Southwest Indian Ridge (SWIR) (full rate, 14 km/Myr). Seismic refraction data collected along the rift valley and flanking rift mountains of the OH-1 segment (35ʻN) at the MAR show that the entire crustal section is constructed within a zone that is less than 5 km wide. Shallow-level hydrothermal circulation within the axial valley is suggested by the rift mountain seismic profiles, which show that the upper crust is 20% thinner and 16% faster along strike than zero-age crust. These effects probably result from fissure sealing within the extrusive crust. Deeper crustal velocities remain relatively constant at the segment midpoint within the first 2 Myr, but are reduced near the segment offsets presumably by faulting and fracturing associated with uplift out of the rift valley. / (cont.) A temporal variation in axial melt supply is suggested by a 15% difference in along-strike crustal thickness between the rift valley and rift mountains, with relatively less melt supplied today than 2 Ma. Crustal accretion at the SWIR appears to occur in a similar manner as at the MAR, although gravity and seismic data indicate that the average crustal thickness is 2-4 km less at theultra-slow spreading SWIR. A 25 Myr record on both flanks of the ridge shows that seafloor spreading has been highly asymmetric through time, with 35% faster crustal accretion on the Antarctic (south) plate. A small-offset non-transform discontinuity between two ridge segments is just as stable as two neighboring transform discontinuities, although a single mantle Bouguer gravity anomaly centered over the non-transform offset indicates that this boundary does not significantly perturb underlying mantle flow. Off-axis magnetic anomalies are recorded with high fidelity despite the very low spreading rates and the absence of a basaltic upper crust in one area. The lower crust may be the dominant off-axis carrier of the magnetic signal, contrary to traditionalmodels of crustal magnetic structure. Morphological and gravity data show evidence of asymmetric crustal accretion across the SWIR ridge axis, with slightly warmer mantletemperatures beneath the slower-spreading African (north) plate. / by Allegra Hosford. / Ph.D.

Page generated in 0.0603 seconds