• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Late-early to middle pleistocene vegetation and climate history of the Highland Valley, British Columbia, Canada

Jonsson, Carl H. W. 22 December 2017 (has links)
The climate and vegetation history of the Middle Pleistocene transition in the interior of British Columbia (BC) is poorly understood due largely to the lack of records. Sediments from the overburden of the Teck Highland Valley Copper mine (HVC) of British Columbia straddle the Brunhes-Matuyama paleomagnetic transition, providing a opportunity to study this critical Pleistocene interval. The stratigraphy was described and sampled for paleomagnetic and pollen/spore analysis at reconnaissance scale. The HVC sediments consist mainly of (from bottom to top) a lower glacial drift, >50 m of lakebed sediments, ~50 m of gravel fan deposits, and a >60 m thick drift of mostly glacial till. These units were deposited by a valley glacier, lake, fluvial/debris flow events, and an ice sheet, respectively. Pollen and spore analyses, reveal at least 11 climate-vegetation intervals (9 zones, 2 more possible ones). These are broadly classified as either warm Pinus-Picea parkland and forest, cold Selaginella-rich steppe or arid Artemisia-Poaceae steppe. These intervals suggest a long paleo-environmental record at HVC and indicate fluctuations between glacial and interglacial climates which can tentatively be placed with Marine Isotope Stages 23 through 16 and younger. The HVC record is a unique sequence with the potential to reveal a much more detailed history of this critical time in Earth’s past. Implications of these findings are discussed. / Graduate / 2018-12-06

Page generated in 0.1155 seconds