• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental observation of turbulent structure at region surrounding the mid-channel braid bar

Khan, M.A., Sharma, N., Pu, Jaan H., Pandey, M., Azamathulla, H. 08 April 2021 (has links)
No / River morphological processes are among the most complex and least understood phenomenon in nature. Recent research indicates that the braiding of marine waterways of the estuary zone occurs at an aspect ratio similar to the alluvial braided river. The instability of complex sporadic fluvial processes at river-sea interface is responsible for bar formation in alluvial as well as in marine waterbodies Due to the lack of knowledge of flow characteristics around bar, the flow structure around the sand bar is analyzed. The bursting events play the crucial role in understanding the fluvial characteristics in the vicinity of submerged structure. The study of bursting events around the mid-channel bar is only done by the present author. The effect of submergence ratio on the turbulence behavior in the proximity of bar is analyzed in this study. The flow turbulence generated by the mid-channel bar is also analyzed in detail. The extreme turbulent burst is segregated from low intensity turbulent events by using the hole size concept. The effect of hole size on the parameter Dominance Function is analysed which is not yet studied by any researcher for mid-channel bar. The Momentum Dominance Function (MDF) parameter increases with increase in the Hole Size. This indicates that the magnitude of upward flux increases with increase in the hole size. The effect of bar height on the turbulent burst which is not yet studied by any researchers is analyzed in the present research. The joint probability distribution of bursting events is modeled using the Gram-Charlier bivariate joint probability function. The joint probability distribution gives the details of probabilistic structure of flow in the vicinity of bar. The effect of bar is predominant only in the lower flow layer. The joint probability distribution graph becomes more eccentric toward the dominant quadrants with increase in the submergence ratio. This indicates that the probability of dominant events further increases with increase in the submergence ratio.
2

Two-dimensional turbulent burst examination and angle ratio utilization to detect scouring/sedimentation around mid-channel bar

Khan, M.A., Sharma, N., Pu, Jaan H., Aamir, M., Pandey, M. 18 May 2021 (has links)
yes / River morphological dynamics are complex phenomena in natural and environmental flows. In particular, the sediment transport around braid mid-channel bars has not gained enough understanding from previous research. The effect of submergence ratio on the turbulence behavior in the proximity of the bar has been investigated in this study. The spatial distribution of turbulent flow in the proximity of bar has been studied by plotting the depth-averaged two-dimensional contours of turbulent kinetic energy. The high value of TKE has been observed in regions just downstream from the bar. It is due to the vortex shedding occurring in that region. The interaction of sweep and ejection events have been analyzed using the parameter Dominance Function obtained from the ratio of occurrence probability of ejection events to the occurrence probability of sweep events. This outcome indicates that the depth averaged parameter Dominance Function has successfully predicted the high scouring region which makes it an ideal parameter for analyzing the scour phenomena in real-world water management projects. The high scouring zone lies in the close proximity of the bar. This shows that the scouring effect from the bar is limited to its close region. The magnitude of scouring occurring at the upstream region of the bar also increases with the increment of submergence ratio. The relationship of quadrant event inclination angles with the sediment transport occurring in the proximity of bar has been also studied, where an Angle Ratio parameter has been utilized for linking the bed elevation change with the inclination angle. The results indicate that the AR parameter has been successfully tested in this study to show its competence to represent the turbulent burst-induced bed sedimentation and scouring. / The author has confirmed that no changes were made to the content of this proof on publication, although the paper is watermarked uncorrected proof.
3

Analysis of turbulent flow structure with its fluvial processes around mid-channel bar

Khan, M.A., Sharma, N., Pu, Jaan H., Alam, S., Khan, W.A. 23 March 2022 (has links)
Yes / Researchers have recognized that the successive growth of mid-channel bar deposits can be entertained as the raison d’être for the initiation of the braiding process, which is closely interlinked with the growth, decay, and vertical distribution of fluvial turbulent kinetic energy (TKE). Thus, focused analysis on the underlying mechanics of turbulent flow structures in the proximity of a bar deposit occurring in the middle of the channel can afford crucial scientific clues for insight into the initiating fluvial processes that give rise to braiding. In the study reported herein, a physical model of a mid-channel bar is constructed in an experimental flume to analyze the turbulence parameters in a region close to the bar. Notably, the flow velocity plays an important role in understanding the flow behavior in the scour-hole location in the upstream flow divergence zone as well as near the downstream zone of flow convergence in a mid-channel bar. Therefore, the fluctuating components of turbulent flow velocity are herein discussed and analyzed for the regions located close to the bar. In the present study, the impact of the mid-channel bar, as well as its growth in turbulent flow, on higher-order velocity fluctuation moments are investigated. For near-bed locations, the results show the dominance of ejection events in upstream zones and the dominance of sweep events at locations downstream of the mid-channel bar. In scour-hole sections, the negative value of the stream-wise flux of turbulent kinetic energy and the positive value of the vertical flux of turbulent kinetic energy indicate energy transport in downward and forward directions, respectively. The downward and forward energy transport processes lead to scouring at these locations. The maximum turbulent production rate occurs in the wake region of the bar. The high rate of turbulence production has occurred in that region, which can be ascribed to the process of shedding turbulent vortices. The results show that the impact of the presence of the bar is mainly restricted to the lower layers of flow. The turbulent dissipation rate monotonically decreases with an increase in the vertical distance from the bed. The turbulent production rate first increases and then decreases with successive increases in the vertical distance from the bed. The paper concludes with suggestions for the future potential use of the present research for the practical purpose of examining braid bar occurrences in alluvial rivers to develop an appropriate response through training measures
4

Mid-channel braid bar induced turbulent bursts: analysis using octant events approach

Khan, M.A., Sharma, N., Pu, Jaan H., Alfaisal, F.M., Alam, S., Garg, R., Qamar, M.O. 28 March 2022 (has links)
Yes / In a laboratory, a model of a mid-channel bar is built to study the turbulent flow structures in its vicinity. The present study on the turbulent flow structure around a mid-channel bar is based on unravelling the fluvial fluxes triggered by the bar’s 3D turbulent burst phenomenon. To this end, the three-dimensional velocity components are measured with the help of acoustic doppler velocimetry (ADV). The results indicate that the transverse component of turbulent kinetic energy cannot be neglected when analyzing turbulent burst processes, since the dominant flow is three-dimensional around the mid-channel bar. Due to the three-dimensionality of flow, the octant events approach is used for analyzing the flow in the vicinity of the mid-channel bar. The aim is to develop functional relationships between the stable movements that are modelled in the present study. To find the best Markov chain order to present experimental datasets, the zero-, first-, and second-order Markov chains are analyzed using the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The parameter transition ratio has evolved in this research to reflect the linkage of streambed elevation changes with stable transitional movements. For a better understanding of the temporal behaviors of stable transitional movements, the residence time vs. frequency graphs are also plotted for scouring as well as for depositional regions. The study outcome herein underlines the usefulness of the octant events approach for characterizing turbulent bursts around mid-channel bar formation, which is a precursor to the initiation of braiding configuration. / This research and APC was funded by King Saud University, Riyadh, Saudi Arabia through Researchers Supporting Project number (RSP-2021/297).

Page generated in 0.0616 seconds