• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of airborne dust in a South African opencast iron ore mine : a pilot study / Rehan Badenhorst

Badenhorst, Rehan January 2013 (has links)
The iron ore mining industry makes use of various processes that result in the release of airborne dust into the surrounding atmosphere where workers are exposed, to produce a final product. The deposition in the lung and toxicological influences of airborne dust can be determined by their physical- and chemical characteristics. The Occupational Health and Safety Act (OHSA) regulations for hazardous chemical substances have no current system of how the physical- and chemical properties of particulates originating from specific areas will influence a worker‘s exposure and health, especially for ultrafine particles (UFP). It is therefore imperative to characterise airborne dust containing micrometer and UFP size particles originating from specific areas to determine if there are physical- and chemical characteristics that may or may not have an influence on the workers‘ health. Aim: This pilot study is aimed at the physical- and chemical characterisation of the airborne iron ore dust generated at the process areas of an opencast iron ore mine. Method: Sampled areas included the Primary-secondary crusher, Tertiary crusher, Quaternary crusher and Sifting house. Gravimetric sampling was conducted through the use of static inhalable- and respirable samplers in conjunction with optical- and condensation particle counters that were placed near airborne dust- emitting sources. Physical- and chemical characterisation was done with the use of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Results: The results found in the study indicate high mass concentration levels of inhalable dust at all four process areas, as well as high levels of respirable dust found at the primary- secondary crusher area. Particle size distribution optical particle counter (OPC) results indicate that the majority of particles at all four process areas are in the region of 0.3 μm in size. Condensation particle counter (CPC) results integrated with OPC results indicate that at the primarysecondary and Tertiary crushers the majority of particles are found to be in the size fraction <0.3 μm. SEM analysis indicates that particle agglomeration largely occurs in the airborne iron ore dust. Particle splinters originating from larger particle collisions and breakages are present in the airborne dust. EDS analysis indicates that the elemental majority of the airborne iron ore dust consists of iron, oxygen, carbon, aluminium, silicon, potassium and calcium. The elemental percentages differ from each process area where an increase in iron and decrease in impurities can be seen as the ore moves through the beneficiation process from the Primary-secondary crusher to the Sifting house. Conclusion: The results obtained from the physical- and chemical properties of the airborne iron ore dust indicate high risk of over-exposure to the respiratory system, as well as possible ultrafine particle systemic exposure, that may overwhelm the physiological defense mechanisms of the human body and lead to reactive oxygen species (ROS) formation and the development of pathologies such as siderosis, silicasiderosis and lung cancer. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
2

Characterisation of airborne dust in a South African opencast iron ore mine : a pilot study / Rehan Badenhorst

Badenhorst, Rehan January 2013 (has links)
The iron ore mining industry makes use of various processes that result in the release of airborne dust into the surrounding atmosphere where workers are exposed, to produce a final product. The deposition in the lung and toxicological influences of airborne dust can be determined by their physical- and chemical characteristics. The Occupational Health and Safety Act (OHSA) regulations for hazardous chemical substances have no current system of how the physical- and chemical properties of particulates originating from specific areas will influence a worker‘s exposure and health, especially for ultrafine particles (UFP). It is therefore imperative to characterise airborne dust containing micrometer and UFP size particles originating from specific areas to determine if there are physical- and chemical characteristics that may or may not have an influence on the workers‘ health. Aim: This pilot study is aimed at the physical- and chemical characterisation of the airborne iron ore dust generated at the process areas of an opencast iron ore mine. Method: Sampled areas included the Primary-secondary crusher, Tertiary crusher, Quaternary crusher and Sifting house. Gravimetric sampling was conducted through the use of static inhalable- and respirable samplers in conjunction with optical- and condensation particle counters that were placed near airborne dust- emitting sources. Physical- and chemical characterisation was done with the use of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Results: The results found in the study indicate high mass concentration levels of inhalable dust at all four process areas, as well as high levels of respirable dust found at the primary- secondary crusher area. Particle size distribution optical particle counter (OPC) results indicate that the majority of particles at all four process areas are in the region of 0.3 μm in size. Condensation particle counter (CPC) results integrated with OPC results indicate that at the primarysecondary and Tertiary crushers the majority of particles are found to be in the size fraction <0.3 μm. SEM analysis indicates that particle agglomeration largely occurs in the airborne iron ore dust. Particle splinters originating from larger particle collisions and breakages are present in the airborne dust. EDS analysis indicates that the elemental majority of the airborne iron ore dust consists of iron, oxygen, carbon, aluminium, silicon, potassium and calcium. The elemental percentages differ from each process area where an increase in iron and decrease in impurities can be seen as the ore moves through the beneficiation process from the Primary-secondary crusher to the Sifting house. Conclusion: The results obtained from the physical- and chemical properties of the airborne iron ore dust indicate high risk of over-exposure to the respiratory system, as well as possible ultrafine particle systemic exposure, that may overwhelm the physiological defense mechanisms of the human body and lead to reactive oxygen species (ROS) formation and the development of pathologies such as siderosis, silicasiderosis and lung cancer. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
3

Phase-Contrast Imaging, Towards G2-less Grating Interferometry With Deep Silicon / Faskontrastavbildning, Mot G2-lös Gitterinterferometri med Djupt Kisel

Brunskog, Rickard January 2022 (has links)
Conventional phase-contrast imaging entails stepping an analyser grating across the detector to resolve the interference pattern caused by the x-rays after passing through a series of gratings in a so-called Talbot-Lau interferometer. However, the analyser grating in the interferometer poses a challenge, not only due to the machinery and alignment required but also due to each exposure delivering a dose to the subject. Another downside of the analyser grating is that whilst the phase-step length can be adjusted, the x-rays allowed through the grating depend on its slit-width ratio, which cannot be changed without changing the whole grating.This thesis evaluates if the analyser grating can be removed by instead using a deep silicon photon-counting detector which can determine the photon interaction position with an uncertainty of around one micrometre. It is concluded that such a high-resolution detector will not only be able to remove the need for an analyser grating and its associated challenges, but the results also imply a three-fold increase in the contrast-to-noise ratio when dose-matching the grating-based approach with the grating-less approach. Furthermore, the conventional absorption image, which is lost when using an analyser grating, will still be available using a high-resolution detector. Finally, the removal of the analyser grating shifts most of the system conditions to the source grating and the phase grating, making it possible to design a compact unit of the two gratings for integration into a CT scanner. / Konventionell faskontrast involverar att stega ett analysgitter över detektorn för att detektera interferensmönstret som skapas av röntgenstrålarna efter att de passerat genom en serie gitter i en så kallad Talbot-Lau interferometer. Analysgittret introducerar en utmaning, inte enbart på grund av maskineriet och kalibreringen som krävs, utan även då varje steg utsätter det röntgade föremålet för strålning. Ytterligare en begränsning är att även om längden på stegen kan justeras beror mängden röntgenstrålar som passerar genom analysgittret på gittrets slitsbredd, vilken inte går att ändra på utan att byta hela gittret.Den här uppsatsen utvärderar om analysgittret kan tas bort genom att istället använda en högupplöst fotonräknande djup kiseldetektor som har förmågan att uppskatta positionen av en fotoninteraktion inom en mikrometer. Slutsatsen är att en sådan detektor kommer att kunna ersätta analysgittret och resultaten tyder på en trefaldig ökning av contrast-to-noise ratio vid dosmatchning mellan metoden med analysgitter och metoden med en högupplöst detektor. Vidare behålls den konventionella absorptionsbilden då man använder en högupplöst detektor, någonting som annars går förlorat vid användandet av analysgittret. Slutligen skiftas de flesta villkoren på systemet till källgittret och fasgittret, vilket tyder på att en kompakt konstruktion av dessa två gitter skulle kunna integreras i en CT-skanner.

Page generated in 0.0647 seconds