Spelling suggestions: "subject:"milieu interplanetary"" "subject:"milieu interplanar""
1 |
Les particules énergétiques solaires : études observationnelles et simulations magnétohydrdynamiquesMasson, Sophie 04 October 2010 (has links) (PDF)
Durant ma thèse je me suis intéressée à deux manifestations spécifiques de la libération d'énergie lors des éruptions solaires: les particules énergétiques et la dynamique de la reconnexion magnétique. Grâce à une étude détaillée des séquences temporelles des différentes signatures électromagnétiques, produites par les particules énergétiques dans la couronne (RHESSI, CORONAS-F, NoRP), et du flux de particules relativistes à la Terre (Moniteurs à neutrons), j'ai pu montré que les particules impactant la Terre étaient accélérées durant un épisode spécifique d'accélération lors de la phase impulsive de l'éruption. Cette étude multi-longueurs d'ondes suggère également que le mécanisme d'accélération des particules injectées plus tard, n'est pas nécessairement identique. Le diagnostic du rayonnement radio (WIND, RSTN) m'a permis d'établir que la longueur interplanétaire parcourue par les particules de la première injection, ~ 1.5 UA, est plus grande que celle généralement supposée pour le transport des particules solaires à la Terre (~1.2 UA). J'ai alors développé une nouvelle méthode permettant d'identifier la structure magnétique interplanétaire dans lesquelles les particules se propagent jusqu'à la Terre. Les analyses des mesures in-situ du champ magnétique (ACE/MAG) et des paramètres plasma (ACE/SWEPAM) du milieu interplanétaire, m'ont permis d'identifier les structures magnétiques du milieu interplanétaire lors des événements à particules relativistes. La comparaison de ces structures avec la longueur parcourue par les particules et obtenue par une analyse de dispersion des vitesses des flux de particules à la Terre (SoHO/ERNE et moniteurs à Neutron) montre clairement que la distance parcourue dépend de la structure magnétique présente à la Terre, mais également que la connexion de la région active à la Terre peut être assurée par des structures magnétiques transitoires différentes de celle de la spirale de Parker comme généralement admis. Le second volet de ma thèse porte sur l'étude de la dynamique de la reconnexion magnétique. L'implémentation du code développé par G. Aulanier, m'a permis de réaliser la première simulation numérique tridimensionnelle magnétohydrodynamique d'un événement solaire observé, contrainte par les mesures du champ magnétique (SoHO/MDI). Par cette étude, j'ai montré que la dynamique des brillances, observées à la surface solaire et généralement attribuée à l'impact de particules énergétiques, s'expliquait par la succession de différents régimes de reconnexion magnétique. J'ai montré que cette dynamique de la reconnexion magnétique était due à une topologie magnétique hybride où les séparatrices associées à un point nul était incluses dans des quasi-séparatrices. La reconnexion à travers les séparatrices se traduit par un saut de connectivité, tandis que la reconnexion à travers les quasi-séparatrices induit un changement continu de la connectivité des lignes de champ magnétique. J'ai ensuite réalisé une seconde simulation tridimensionnelle magnétohydrodynamique d'une configuration magnétique en point nul asymétrique, mais cette fois impliquant des lignes de champ ouvert lors de la reconnexion. Après avoir confirmé la présence de quasi-séparatrices entourant les sépratrices, ce travail m'a permis de d'établir un nouveau modèle d'injection de particules dans l'héliosphère, permettant d'expliquer les mesures interplanétaires de particules dans une large gamme de longitude, qui sont généralement expliquer par la diffusion des particules dans la couronne.
|
2 |
Etude des émissions gazeuses UV/X et des phénomènes d'échange de charge dans l'Héliosphère : application à des systèmes astrophysiques analogues.Koutroumpa, Dimitra 29 November 2007 (has links) (PDF)
L'échange de charge est un processus de couplage très efficace lorsqu'un gaz ionisé interagit avec un gaz neutre. Le but de ma thèse était d'étudier l'occurence de ce phénomène et ses effets dans l'héliosphère et d'autres systèmes astrophysiques.<br /><br />J'ai en premier lieu déterminé les paramètres du flot d'hydrogène atomique interstellaire autour du soleil et mis en évidence sa déflection à l'entrée dans l'héliosphère. Cette d´eflection, due à la création d'une population d'atomes secondaires lors des échanges de charge atomes H-protons, est la conséquence de la distorsion de l'héliosphère sous l'effet du champ magn´etique interstellaire. L'étude était basée sur l'analyse et la modélisation des données de l'instrument SWAN sur SOHO, qui mesure l'émission de rétro-diffusion résonnante du rayonnement solaire à Lyman-α (121.6nm) par les atomes d'hydrogène dans l'espace interplanétaire et sa ré-absorption par une cellule montée devant les photomètres.<br /><br />Dans une deuxième phase, j'ai étudié les émissions EUV/X (0.1-1 keV) dues aux échanges de charge entre les ions lourds du vent solaire et les atomes d'hydrogène et d'hélium. J'ai développé un modèle statique et une variante dynamique pour calculer les émissions X dans l'héliosphère en tenant compte des variations de l'activité solaire à grande (cycle de 11 ans) et courte (sursauts de vent solaire) échelle. J'ai appliqué mon modèle à une série d'observations X avec les télescopes XMM, Chandra et Suzaku. L'étude a montré que l'héliosphère est responsable de toute l'´emission entre 0.3 et 1 keV attribuée auparavant à la Bulle Interstellaire Locale, une structure de 100 parsecs environ, supposée remplie de gaz très chaud. Les résultats préliminaires dans le domaine 0.1-0.3 keV montrent également que la contribution héliosphérique est du même ordre que celle attribuée à la Bulle Locale.<br /><br />Finalement, en utilisant des modèles existants de l'interface entre le vent solaire et l'exosphère de Mars, j'ai calculé les émissions X dues aux échanges de charge entre les ions lourds du vent solaire et les atomes planétaires, montré comment elles révèlent les structures magnétiques autour de la planète, et les ai comparées aux observations récentes Chandra/XMM.
|
3 |
Une étude du bruit quasi-thermique et du bruit d'impact dans les plasma spatiaux / A study of quasi-thermal noise and shot noise in space plasmasMartinović, Mihailo 20 October 2016 (has links)
La spectroscopie de bruit quasi-thermique est une méthode précise de déterminat-ion de la densité et de la température dans les plasmas spatiaux. Lorsqu'une antenne électrique est immergé dans un plasma, elle est capable de mesurer les fluctuations électrostatiques provoquées par le mouvement thermique des particules de plasma. Ces fluctuations sont détectées par la densité de puissance spectrale aux bornes de l'antenne, en observant un spectre à des fréquences comparables à la fréquence plasma électronique aussi bien pour les électrons que pour les protons, car le signal du proton est fortement décalé Doppler vers des fréquences plus élevées en raison de la vitesse de dérive du vent solaire. En plus d'induire le champ électrique fluctuant, une partie des électrons impactent sur la surface de l'antenne, ce qui provoque des perturbations de son potentiel électrique. Le signal provoqué par cette population est directement proportionnelle au flux d'électrons du plasma impactant l'antenne et est dominante si l'antenne a une grande surface. Dans ce travail, nous utilisons la théorie de l'orbite limite pour calculer le flux de particules impactantes pour un plasma non thermique décrit par fonction de distribution de vitesses $kappa$ ou Lorentzienne, communément mesurée dans le vent solaire. L'augmentation de la collecte de particules par des objets cylindriques et sphériques est quantifié et présenté en tant que fonction du potentiel électrostatique de surface et de la fraction des particules supra-thermique. La prise en compte de ces résultats théoriques est absolument nécessaire pour des mesures précises des paramètres du plasma à chaque fois que le bruit d'impact est l'élément dominant dans le spectre de puissance. Ceci est le cas pour STEREO, car les bruit d'impact est dominant pour cette sonde, en raison de la présence d'antennes courtes et épaisses. L'étude approfondie des données sur cette mission est motivée par le fait que ses analyseurs d'électrons sont défectueux depuis le lancement et aucune information sur les électrons thermiques n'est disponible. Les résultats obtenus sont vérifiés en comparant avec les résultats de Wind, montrant une bonne concordance entre les valeurs mesurées par les deux satellites. Les incertitudes des mesures sont déterminées par les incertitudes des instruments utilisés et sont estimés à environ $40%$. Le résultat final de ce travail sera l'établissement d'une base de données des moments d'électrons pour les deux sondes STEREO A et B qui couvriront toute la durée de la mission. Dans une seconde partie de la thèse, nous utilisons l'approche cinétique pour étendre la théorie du bruit quasi-thermique à des plasmas où les collisions des électrons avec les neutres jouent un rôle dominant. Cette technique permet de mesurer la densité et la température des électrons, et aussi la fréquence des collisions en tant que paramètres indépendants. Ceci est obtenu sur une large gamme de fréquences aussi bien en dessous qu'au dessus de la fréquence plasma, pour peu que le rapport entre la fréquence de collision et fréquence de plasma ne soit pas inférieur à 0.1. Les résultats présentés ici peuvent potentiellement être appliqués avec succès dans les plasmas de laboratoire et ionosphères non magnétisés, tandis que pour l'ionosphère de la Terre leur utilisation est limitée aux fréquences basses à cause de la présence d'un champ magnétique fort. / The quasi-thermal noise spectroscopy is an accurate method of determination of density and temperature in space plasmas. When an electric antenna is immersed into a plasma, it is able to measure electrostatic fluctuations caused by the thermal motion of plasma particles. These fluctuations are detected as the power spectral density at the antenna terminals, observing a spectrum at frequencies comparable to the electron plasma frequency for both electrons and protons, since the proton signal is strongly Doppler-shifted towards higher frequencies due to the solar wind drift velocity. Beside inducing the fluctuating electric field, some of the electrons are impacting the antenna surface, causing disturbances of the antenna electric potential. The signal caused by this population is directly proportional to the flux of plasma electrons impacting the antenna and is dominant if the antenna has a large surface area. In this work, we use the orbit limited theory to calculate the incoming particle flux for a non-thermal plasma described by $kappa$ velocity distribution function, commonly measured in the solar wind. The increase in the particle collection by cylindrical and spherical objects is quantified and presented as a function of the surface electrostatic potential and the fraction of supra-thermal particles. Including these results into the theory has turned out to be absolutely necessary for accurate measurements of the plasma parameters whenever the shot noise is the dominant component in the power spectrum. This is the case for STEREO because the impact noise is overwhelming on this probe, due to the presence of short and thick antennas. The comprehensive study of data on this mission is motivated by the fact that the electron analyzers are malfunctioning since launch and no information on thermal electrons is available. Results obtained are verified by comparing with the results from Wind, showing a good match between the values measured by the two spacecraft. Uncertainties of the measurements are determined by the uncertainties of the instruments used and are estimated to be around $40%$. The final outcome of this work will be establishing a database of the electron moments in both STEREO A and B that will be covering the entire duration of the mission. In the second part of the thesis, we use the kinetic approach to expand the theory of the quasi-thermal noise to plasmas where electron-neutral collisions play a dominant role. This technique is able to measure the electron density, temperature and the collision frequency as independent parameters using the wide frequency range both below and above the plasma frequency, if the ratio of the collisional to plasma frequency is not smaller than 0.1. The results presented here have can be potentially applied in laboratory plasmas and unmagnetized ionospheres, while at the ionosphere of Earth their use is limited to low frequencies due to the presence of the magnetic field.
|
Page generated in 0.067 seconds