Spelling suggestions: "subject:"billing circuit"" "subject:"4illing circuit""
1 |
Robust nonlinear model predictive control of a closed run-of-mine ore milling circuitCoetzee, Lodewicus Charl 27 September 2009 (has links)
This thesis presents a robust nonlinear model predictive controller (RNMPC), nominal nonlinear model predictive controller (NMPC) and single-loop proportional-integral-derivative (PID) controllers that are applied to a nonlinear model of a run-of-mine (ROM) ore milling circuit. The model consists of nonlinear modules for the individual process units of the milling circuit (such as the mill, sump and cyclone), which allow arbitrary milling circuit configurations to be modelled easily. This study aims to cast a complex problem of a ROM ore milling circuit into an RNMPC framework without losing the flexibility of the modularised nonlinear model and implement the RNMPC using open-source software modules. The three controllers are compared in a simulations study to determine the performance of the controllers subject to severe disturbances and model parameter variations. The disturbances include changes to the feed ore hardness, changes in the feed ore size distributions and spillage water being added to the sump. The simulations show that the RNMPC and NMPC perform better than the PID controllers with regard to the economic objectives, assuming full-state feedback is available, especially when actuator constraints become active. The execution time of the RNMPC, however, is much too long for real-time implementation and would require further research to improve the efficiency of the implementation. / Thesis (PhD)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
|
2 |
Demand side management of a run-of-mine ore milling circuitMatthews, Bjorn January 2015 (has links)
In South Africa, where 75% of the worlds platinum is produced, electricity tariffs have increased significantly over recent years. This introduces challenges to the energy intensive mineral processing industry. Within the mineral processing chain, run-of-mine ore milling circuits are the most energy-intensive unit processes. Opportunities to reduce the operating costs associated with power consumption through process control are explored in this work.
In order to reduce operating costs, demand side management was implemented on a milling circuit using load shifting. Time-of-use tariffs were exploited by shifting power consumption of the milling circuit from more expensive to cheaper tariff periods in order to reduce overall costs associated with electricity consumption. Reduced throughput during high tariff periods was recovered during low tariff periods in order to maintain milling circuit throughput over a week long horizon.
In order to implement and evaluate demand side management through process control, a load shifting controller was developed for the non-linear Hulbert model. Implementation of the load shifting controller was achieved through a multi-layered control approach. A regulatory linear MPC controller was developed to address technical control requirements such as milling circuit stability. A supervisory real-time optimizer was developed to meet economic control requirements such as reducing electricity costs while maintaining throughput.
Scenarios, designed to evaluate the sensitivities of the load shifting controller, showed interesting results. Mill power set-point optimization was found to be proportionally related to the mineral price. Set-points were not sensitive to absolute electricity costs but rather to the relationships between peak, standard, and off-peak electricity costs. The load shifting controller was most effective at controlling the milling circuit where weekly throughput was between approximately 90% and 100% of the maximum throughput capacity.
From an economic point of view, it is shown that for milling circuits that are not throughput constrained, load shifting can reduce operating costs associated with electricity consumption. Simulations performed indicate that realizable cost savings are between R16.51 and R20.78 per gram of unrefined platinum processed by the milling circuit. This amounts to a potential annual cost saving of up to R1.89 m for a milling circuit that processes 90 t/h at a head grade of 3 g/t. / Dissertation (MEng)--University of Pretoria, 2015. / Electrical, Electronic and Computer Engineering / Unrestricted
|
Page generated in 0.1213 seconds