Spelling suggestions: "subject:"billing machinery."" "subject:"4illing machinery.""
31 |
The economic benefits of mill control.Raymond, Gary Francis. January 1972 (has links)
No description available.
|
32 |
Numerical and experimental studies of granular dynamics in IsaMillJayasundara, Chandana Tilak, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
IsaMill is a stirred type mill used in mineral industry for fine and ultra-fine grinding. The difficulty in obtaining the internal flow information in the mill by experimental techniques has prevented the development of the fundamental understanding of the flow and generating general methods for reliable scale-up and optimized design and control parameters. This difficulty can be effectively overcome by numerical simulation based on discrete element method (DEM). In this work a DEM model was developed to study particle flow in a simplified IsaMill. The DEM model was validated by comparing the simulated results of the flow pattern, mixing pattern and power draw with those measured from a same scale lab mill. Spatial distributions of microdynamic variables related to flow and force structure such as local porosity, particle interaction forces, collision velocity and collision frequency have been analyzed. Among the materials properties of particles, it is shown that by decreasing particle/particle sliding friction coefficient, the particle flow becomes more vigorous which is useful to grinding performance. Restitution coefficient does not affect the particle flow significantly. A too low or too high particle density could decrease grinding efficiency. Although grinding medium size affects the flow, its selection may depend on the particle size of the products. Among the operational variables considered, the results show that fill volume and mill speed proved to be important factors in IsaMil process. Increase of fill volume or mill speed increases the interaction between particles and agitating discs which results in a more vigorous motion of the particles. Among the mill properties, particle/stirrer sliding friction plays a major role in energy transfer from stirrer to particles. Although there exists a minimum collision energy as particle/stirrer sliding friction increases, large particle/stirrer sliding friction may improve grinding performance as it has both large collision frequency and collision energy. However, that improvement is only up to a critical particle/disc sliding friction beyond which only input energy increases with little improvement on collision frequency and collision energy. Reducing the distance between stirrers or increasing the size of disc holes improves high energy transfer from discs to particles, leading to high collision frequency and collision energy. Among the different stirrer types, the energy transfer is more effective when disc holes are present. Pin stirrer shows increased collision energy and collision frequency which also result in a high power draw. Using the DEM results, a wear model has been developed to predict the wear pattern of the discs. This model can be used to predict the evolution of the disc wear with the time. It is shown that energy transfer from discs to particles are increased when discs are worn out. An attempt has also been made to analyze the microdynamic properties of the mill for different sizes. It is shown that specific power consumption and impact energy are correlated regardless of the mill size and mill speed.
|
33 |
State space formulation of TFEA & uncharted islands of instability in millingPatel, Bhavin Ramesh, January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on January 7, 2008) Includes bibliographical references.
|
34 |
The economic benefits of mill control.Raymond, Gary Francis. January 1972 (has links)
No description available.
|
35 |
Development of a condition monitoring philosophy for a pulverised fuel vertical spindle millGovender, André January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering.
Johannesburg 2016 / The quantity and particle size distribution of pulverised coal supplied to combustion equipment downstream of coal pulverising plants are critical to achieving safe, reliable and efficient combustion. These two key performance indicators are largely dependent on the mechanical condition of the pulveriser. This study aimed to address the shortfalls associated with conventional time-based monitoring techniques by developing a comprehensive online pulveriser condition monitoring philosophy. A steady-state Mill Mass and Energy Balance (MMEB) model was developed from first principles for a commercial-scale coal pulveriser to predict the raw coal mass flow rate through the pulveriser. The MMEB model proved to be consistently accurate, predicting the coal mass flow rates to within 5 % of experimental data. The model proved to be dependent on several pulveriser process variables, some of which are not measured on a continuous basis. Therefore, the model can only function effectively on an industrial scale if it is supplemented with the necessary experiments to quantify unmeasured variables. Moreover, a Computational Fluid Dynamic (CFD) model based on the physical geometry of a coal pulveriser used in the power generation industry was developed to predict the static pressure drop across major internal components of the pulveriser as a function of the air flow through the pulveriser. Validation of the CFD model was assessed through the intensity of the correlation demonstrated between the experimentally determined and numerically calculated static pressure profiles. In this regard, an overall incongruity of less than 5 % was achieved. Candidate damage scenarios were simulated to assess the viability of employing the static pressure measurements as a means of detecting changes in mechanical pulveriser condition. Application of the validated pulveriser CFD model proved to be highly advantageous in identifying worn pulveriser components through statistical analysis of the static pressure drop measured across specific components, thereby demonstrating a significant benefit for industrial application. / MT2016
|
36 |
PVDF sensor based wireless monitoring of milling processMa, Lei 05 February 2013 (has links)
Analytical force and dynamic models for material removal processes such as end and face milling do not account for material and process related uncertainties such as tool wear, tool breakage and material inhomogeneity. Optimization of material removal processes thus requires not only optimal process planning using analytical models but also on-line monitoring of the process so that adjustments, if needed, can be initiated to maximize the productivity or to avoid damaging expensive parts. In this thesis, a Polyvinylidene Fluoride (PVDF) sensor based process monitoring method that is independent of the cutting conditions and workpiece material is developed for measuring the cutting forces and/or torque in milling. The research includes the development of methods and hardware for wireless acquisition of time-varying strain signals from PVDF sensor-instrumented milling tools rotating at high speeds and transformation of the strains into the measurand of interest using quantitative physics-based models of the measurement system. Very good agreement between the measurements from the low cost PVDF sensors and the current industry standard, piezoelectric dynamometer, has been achieved. Three PVDF sensor rosettes are proposed for measuring various strain components of interest and are shown to outperform their metal foil strain gauge counterparts with significantly higher sensitivity and signal to noise ratio. In addition, a computationally efficient algorithm for milling chatter recognition that can adapt to different cutting conditions and workpiece geometry variations based on the measured cutting forces/torque signals is proposed and evaluated. A novel complex exponential model based chatter frequency estimation algorithm is also developed and validated. The chatter detection algorithm can detect chatter before chatter marks appear on the workpiece and the chatter frequency estimation algorithm is shown to capture the chatter frequency with the same accuracy as the Fast Fourier Transform (FFT). The computational cost of the chatter detection algorithm increases linearly with data size and the chatter frequency estimation algorithm, with properly chosen parameters, is shown to perform 10 times faster than the FFT. Both the cutting forces/torque measurement methodology and the chatter detection algorithm have great potential for shop floor application. The cutting forces/torque measurement system can be integrated with adaptive feedback controllers for process optimization and can also be extended to the measurement of other physical phenomena.
|
37 |
A study of comminution in a vertical stirred ball mill.Tuzun, Mustafa Asim. January 1993 (has links)
A 20 litre experimental batch and continuous test rig and 5 litre batch
and 50 litre continuous test rigs for stirred ball milling were built at the University
of Natal and Mintek respectively. All the mills featured a grinding vessel with a
central shaft equipped with pins and a torque measurement system. A washed
chrome sand from the Bushveld Igneous Complex was used for the grinding
experiments. Particle size analysis of products was performed using standard
sieves and a Malvern Particle Sizer.
Batch tests were run in the 20 litre stirred ball mill to achieve efficient
grinding conditions. The effects of grinding conditions such as pulp density, media
size, media density and shaft rotation speed and mill design parameters such as
ball load, pin spacing and pin diameter on product size, power consumption and
media wear were studied. It has been shown that the median size of the product
can be calculated by the Charles' Energy-Size Equation.
The stirred ball mill has been found to be more energy efficient than the
tumbling ball mill. An energy reduction of 50% was possible for a product size of 6
microns when the stirred ball mill was employed instead of the tumbling ball mill.
The energy input per ton of grinding media in the stirred ball mill could be 10 times
higher than for the tumbling ball mill. Although during coarse grinds the media
wear was higher in the stirred ball mill than in the tumbling mill, it became less so
as grinding proceeded and for a product median size of 4.8 microns it was the
same.
Using a 5 litre batch mill, an experimental programme was designed to
study the comminution characteristics of the stirred mill. A factorial design was
prepared with the following parameters, which influence grinding in the stirred ball
mill: pulp density, pin tip velocity and ball density and size. The energy required for
grinding the chromite sand in the stirred ball mill was determined by the use of
Charles' Equation. The findings were in agreement with the results predicted by
this equation. It was shown that the Rosin-Rammler size distribution equation was
a suitable procedure for presenting and comparing grinding data obtained from the
stirred ball mill. The factors that had the greatest effect on grindability were, in
order of importance: ball size, pin tip velocity and ball density. Interactions
between grinding parameters were negligible. results implied that accurate
predictions can be made to determine the grinding conditions required to achieve
a desired product specification.
An attempt was made to study the grinding kinetics the chromite are
using the mass population·balance model. Grinding tests were performed with two
mono size fractions ·53+38 and -38+25 microns and natural feed ·100 microns
using various pin tip velocities, ball densities and within the normal stirred
ball milling operating range. relationship between the ball diameter and the
particle was explained by the "angle of nip" theory which applied for roller
crushers. It was shown that the particle giving the maximum breakage rate
was directly proportional to the ball diameter. Estimated grinding kinetic
parameters from monosize provided a good basis for predictions of
natural feed. However, the breakage rate obtained from monosize tests
appeared to be lower than those from the natural feed It was found that if the
selection and breakage functions were determined by monosize tests, it was
possible to modify selection function parameters by back-calculation which gave
the best fit to the natural feed size. A good correlation was obtained between the
experimental and product distributions using a population-balance
model. The links between the empirical model combining Charles' and
Rosin-Rammler equations and the first-order batch grinding equation were also
shown.
The stirred ball mills were operated in batch and continuous mode. The
median size of the products from the batch stirred ball mill experiments closely
matched those of the continuous grinding experiments under similar grinding
conditions. Using a salt solution as a tracer material, an attempt was made to
estimate the residence time distribution based on a simplified analysis of the
motion of the water in tile mill.
The current scale-up methods for the stirred ball mill are discussed. A
torque model was developed for given shaft geometry and ball relating the
power rements of the stirred ball mill to the following prime design and
operating parameters : mill diameter, mill height, pin tip velocity and effective
density of the mill load. The basic assumptions underlying the model were that the
mill content behaved as a fluidised bed, consequently a P effg h type model for the
pressure was applied throughout the grinding media bed the effective charge
velocity was proportional to the pin tip velocity. It was found that pin spacing, pin
diameter and ball diameter significantly affected the mill torque. A semi-empirical
torque model was derived to include these parameters. The relationships
formulated from these models were shown to be in excellent agreement with
experimental results. / Thesis (Ph.D.)-University of Natal, Durban, 1993.
|
38 |
The controlled ball milling of titanium and carbon to form TiC /Lohse, Benjamin H. January 2005 (has links)
Thesis (Ph. D.)--University of Wollongong, 2005. / Typescript. Includes bibliographical references (leaf 111-114).
|
39 |
Optimisation of the classical semi-autogenous and ball milling circuit using the attainable region techniqueBashe, Luzuko 10 1900 (has links)
The objective of this study was to improve the operation of the classical semiautogenous and ball milling circuit also known as the SABC circuit. In order to
achieve this goal, the challenges around this circuit were identified as the
formation of critical sized material in a SAG mill. The size class considered for the
critical sized material also known as pebbles was -100+23 mm. The attainable
region (AR) method was used as an optimisation technique for the generated
results using a computer simulation programme. MODSIM® demo version 3.6.22
is ore processing simulator that was used.
The research was divided into two sections, the first being the variation of feed
flow rate ranging from 50 – 150 tph and ore feed size ranging between 100 and
600 mm. The second section compared the variation of the operating parameters
of the SAG mill, which were mill filling, ball filling, ball size and mill speed. The AR
technique graphically presented the results which indicated the best operating
conditions to minimise pebble formation.
The effects of mill filling on a SAG mill indicate that a higher filling produces lower
pebbles. Lower pebble generation also was observed at a higher ball filling. The
influence of ball size indicated that the larger ball size was more effective in the
reduction of pebbles. For mill speed the media displayed two common mode
operations namely cascading at a low speed of 65% and cataracting at higher
speed of 75%. The higher speed generated the least pebbles. / College of Engineering, Science and Technology / M. Tech. (Chemical Engineering)
|
40 |
Effects of mill rotational speed on the batch grinding kinetics of a UG2 platinum oreMakgoale, Dineo Mokganyetji 11 1900 (has links)
In this study, the effect of speed was investigated on the breakage rate of UG2
platinum ore in a batch mill of 5 dm3 and 175 mm internal diameter. One size fraction
method was carried out to perform the experiment. Five mono-sized fractions in the
range of 1.180 mm to 0.212 mm separated by √2 series interval were prepared. The
fractions were milled at different grinding times (0.5, 2, 4, 15 and 30 min) and three
fractions of mill critical speed were considered (20%, 30%, and 40%). The target of
critical speed below 50% was due to the need of lower energy consumption in milling
processes. The selection and breakage function parameters were determined and
compared for fractions of critical speed.
First the grinding kinetics of the ore was determined and it was found that the
material breaks in non-first order manner. Thereafter, effective mean rate of
breakage was determined. It was found that the rate of breakage increased with
increase of mill speed and optimum speed was not reached in the range of chosen
mill speed fractions. Again the rate of breakage was plotted as a function of particle
size, the optimum size was 0.8 mm when milling at 30% critical speed. As for 20% and
30% optimum size was not reached. The selection function parameters estimated at
30% critical speed were 𝑎0 = 0.04 min−1
, 𝛼 = 1.36, 𝜇 = 0.9 mm, and Λ = 3. Breakage
function parameters were determined and was noticed that the material UG2
platinum ore is non-normalised, i.e. Φ value was changing from 0.25 to 0.90
depending on feed size and mill speed. The parameters 𝛽 and 𝛾 were constant at 7.3
and 1.17 respectively. / College of Science, Engineering and Technology / M. Tech. (Chemical Engineering)
|
Page generated in 0.0575 seconds