• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topologia de singularidades e o estudo de seus invariantes / Topology of singularities and the study of invariants

Barbosa, Grazielle Feliciani 08 April 2008 (has links)
Algumas relações entre A-invariantes de germes de aplicações de coposto 1 equidimensionais f : \'C POT. n\' , 0 \'SETA\' \"C POT.n\', 0 são descritas. O principal resultado estabelece que a soma alternada de números de Milnor dos fechos dos conjuntos Ai na fonte de f é igual a multiplicidade local de f menos n + 1. E existem fórmulas correspondentes para os s-tipos estáveis locais A(\'k IND.1\' ,...\'k IND.s\'). As relações nos garantem condiçõoes para a A-finitude de f e para a A-trivialidade topológica de deformações de f. Também classificamos os germes de aplicações A-simples f : \'C POT.2\', 0 \'SETA\' \'C POT.5\', 0, para multiplicidades 1, 2 e 3 / Some new relations between A-invariants of equidimensional corank-1 map germs f :\'C POT.n\', 0 \' \'ARROW\' \'C POT.n\', 0 are described. The main local result states that the alternating sum ofthe Milnor numbers of the closures of the Ai sets in the source of f is equal to the local multiplicity of f minus n + 1. And there are corresponding formulas for the s-local stable types A(\'k IND.1\' ,...,\'k IND.s\'). The realations provide simplified (or weaker) conditions for the A-finiteness of f and for the topological A-triviality of deformations of f. We also classify the A-simple germs f : \'C POT.2\', 0 \'ARROW\' \'C POT.5\', 0 for multiplicities 1, 2, and 3
2

Topologia de singularidades e o estudo de seus invariantes / Topology of singularities and the study of invariants

Grazielle Feliciani Barbosa 08 April 2008 (has links)
Algumas relações entre A-invariantes de germes de aplicações de coposto 1 equidimensionais f : \'C POT. n\' , 0 \'SETA\' \"C POT.n\', 0 são descritas. O principal resultado estabelece que a soma alternada de números de Milnor dos fechos dos conjuntos Ai na fonte de f é igual a multiplicidade local de f menos n + 1. E existem fórmulas correspondentes para os s-tipos estáveis locais A(\'k IND.1\' ,...\'k IND.s\'). As relações nos garantem condiçõoes para a A-finitude de f e para a A-trivialidade topológica de deformações de f. Também classificamos os germes de aplicações A-simples f : \'C POT.2\', 0 \'SETA\' \'C POT.5\', 0, para multiplicidades 1, 2 e 3 / Some new relations between A-invariants of equidimensional corank-1 map germs f :\'C POT.n\', 0 \' \'ARROW\' \'C POT.n\', 0 are described. The main local result states that the alternating sum ofthe Milnor numbers of the closures of the Ai sets in the source of f is equal to the local multiplicity of f minus n + 1. And there are corresponding formulas for the s-local stable types A(\'k IND.1\' ,...,\'k IND.s\'). The realations provide simplified (or weaker) conditions for the A-finiteness of f and for the topological A-triviality of deformations of f. We also classify the A-simple germs f : \'C POT.2\', 0 \'ARROW\' \'C POT.5\', 0 for multiplicities 1, 2, and 3

Page generated in 0.0428 seconds