• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CENH3 Suppression of Centromeric Drive in Mimulus Guttatus

Leblanc, Silvia 01 January 2019 (has links)
The inherent asymmetry of female meiosis presents an opportunity for genetic material to gain an evolutionary advantage during the formation of the egg. Since centromeres mediate chromosomal segregation by forming the bridge between microtubules and chromosomes during cell division, they are loci that can drive, or selfishly evolve, during female meiosis by manipulating the process of entering the egg. Mimulus guttatus, a species of yellow monkeyflowers, has the best documented case of centromeric drive (Fishman and Saunders, 2008). Since homozygotes for drive have decreased pollen viability, lower seed counts, and poor reproductive success, CENH3 —the gene that encodes the H3 histone specific to centromeres— has evolved to suppress centromeric drive. CENH3 is duplicated in Mimulus, and the sequence variation of CENH3_A suggests that this paralog can suppress centromeric drive during female meiosis (Finseth et al. 2015). Our analysis of gene expression levels in meiotic and mitotic tissues indicates that both CENH3_A and CENH3_B are still expressed at similar levels, suggesting that the paralogs have not specialized for different roles in cell divisions. However, qPCR was only performed with nine tissue samples, so further analysis of gene expression with a larger sample set is needed to confirm whether or not the CENH3 paralogs have specialized roles in meiosis and mitosis.
2

Spatial Variation in Bidirectional Pollinator-Mediated Interactions Between Two Co-Flowering Species in Serpentine Plant Communities

Stanley, Amber, Martel, Carlos G., Arceo-Gómez, Gerardo 01 December 2021 (has links)
Pollinator-mediated competition and facilitation are two important mechanisms mediating co-flowering community assembly. Experimental studies, however, have mostly focused on evaluating outcomes for a single interacting partner at a single location. Studies that evaluate spatial variation in the bidirectional effects between co-flowering species are necessary if we aim to advance our understanding of the processes that mediate species coexistence in diverse co-flowering communities. Here, we examine geographic variation (i.e. at landscape level) in bidirectional pollinator-mediated effects between co-flowering and We evaluated effects on pollen transfer dynamics (conspecific and heterospecific pollen deposition) and plant reproductive success. We found evidence of asymmetrical effects (one species is disrupted and the other one is facilitated) but the effects were highly dependent on geographical location. Furthermore, effects on pollen transfer dynamics did not always translate to effects on overall plant reproductive success (i.e. pollen tube growth) highlighting the importance of evaluating effects at multiple stages of the pollination process. Overall, our results provide evidence of a spatial mosaic of pollinator-mediated interactions between co-flowering species and suggest that community assembly processes could result from competition and facilitation acting simultaneously. Our study highlights the importance of experimental studies that evaluate the prevalence of competitive and facilitative interactions in the field, and that expand across a wide geographical context, in order to more fully understand the mechanisms that shape plant communities in nature.
3

Theoretical and Emperical Investigations into Adaptation

Wright, Kevin Matthew January 2010 (has links)
<p>The problem is two fold: how does natural selection operate on systems of interacting genes and how does natural selection operate in natural populations. To address the first problem, I have conducted a theoretical investigation into the evolution of control and the distribution of mutations in a simple system of interacting genes, a linear metabolic pathway. I found that control is distributed unevenly between enzymes, with upstream enzymes possessing the greatest control and accumulating the most beneficial mutations during adaptive evolution. To address the second problem, I investigated the evolution of copper tolerance in the common yellow monkeyflower, Mimulus guttatus. I genetically mapped a major locus controlling copper tolerance, Tol1. A Dobzhansky-Muller incompatibility was hypothesized to also be controlled by Tol1, however, we have demonstrated that it maps to another, tightly linked locus, Nec1. Finally, we investigated the parallel evolution of copper tolerance in multiple new discovered mine populations. We found that copper tolerance has evolved in parallel multiple times via at least two distinct physiological mechanisms. In four mine populations, there was a strong signal of selection at markers linked to Tol1, implying that copper tolerance has evolved via the same genetic mechanisms in these populations.</p> / Dissertation
4

Mitochondrial heteroplasmy in <i>Mimulus guttatus</i>

Floro, Eric R. 08 April 2011 (has links)
No description available.

Page generated in 0.0776 seconds