Spelling suggestions: "subject:"mineração dde data stream"" "subject:"mineração dee data stream""
1 |
Um estudo investigativo de algoritmos de regressão para data streamsNunes, André Luís 28 March 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-06-13T14:22:04Z
No. of bitstreams: 1
André Luís Nunes_.pdf: 2523682 bytes, checksum: 5e3899cfac6d76db6b2c6ac16b7f5325 (MD5) / Made available in DSpace on 2017-06-13T14:22:04Z (GMT). No. of bitstreams: 1
André Luís Nunes_.pdf: 2523682 bytes, checksum: 5e3899cfac6d76db6b2c6ac16b7f5325 (MD5)
Previous issue date: 2017-03-28 / Nenhuma / A explosão no volume de dados e a sua velocidade de expansão tornam as tarefas de descoberta do conhecimento e a análise de dados desafiantes, ainda mais quando consideradas bases não-estacionárias. Embora a predição de valores futuros exerça papel fundamental em áreas como: o clima, problemas de roteamentos e economia, entre outros, a classificação ainda parece ser a tarefa mais explorada. Recentemente, alguns algoritmos voltados à regressão de valores foram lançados, como por exemplo: FIMT-DD, AMRules, IBLStreams e SFNRegressor, entretanto seus estudos investigativos exploraram mais aspectos de inovação e análise do erro de predição, do que explorar suas capacidades mediante critérios apontados como fundamentais para data stream, como tempo de execução e memória. Dessa forma, o objetivo deste trabalho é apresentar um estudo investigativo sobre estes algoritmos que tratam regressão, considerando ambientes dinâmicos, utilizando bases de dados massivas, além de explorar a capacidade de adaptação dos algoritmos com a presença de concept drift. Para isto três bases de dados foram analisadas e estendidas para explorar os principais critérios de avaliação adotados, sendo realizada uma ampla experimentação que produziu uma comparação dos resultados obtidos frente aos algoritmos escolhidos, possibilitando gerar indicativos do comportamento de cada um mediante os diferentes cenários a que foram expostos. Assim, como principais contribuições deste trabalho são destacadas: a avaliação de critérios fundamentais: memória, tempo de execução e poder de generalização, relacionados a regressão para data stream; produção de uma análise crítica dos algoritmos investigados; e a possibilidade de reprodução e extensão dos estudos realizados pela disponibilização das parametrizações empregadas / The explosion of data volume and its expansion speed make tasks of finding knowledge and analyzing data challenging, even more so when non-stationary bases are considered. Although the future values prediction plays a fundamental role in areas such as climate, routing problems and economics, among others, classification seems to be still the most exploited task. Recently, some value-regression algorithms have been launched, for example: FIMT-DD, AMRules, IBLStreams and SFNRegressor; however, their investigative studies have explored more aspects of innovation and analysis of error prediction than exploring their capabilities through criteria that are considered fundamental to data stream, such as elapsed time and memory. In this way, the objective of this work is to present an investigative study about these algorithms that treat regression considering dynamic environments, using massive databases, and also explore the algorithm's adaptability capacity with the presence of concept drift. In order to do this, three databases were analyzed and extended to explore the main evaluation criteria adopted. A wide experiment was carried out, which produced a comparison of the results obtained with the chosen algorithms, allowing to generate behavior indication of each one through the different scenarios to which were exposed. Thus, the main contributions of this work are: evaluation of fundamental criteria: memory, execution time and power of generalization, related to regression to data stream; production of a critical analysis of the algorithms investigated; and the possibility of reproducing and extending the studies carried out by making available the parametrizations applyed.
|
Page generated in 0.0936 seconds