• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

UNDERSTANDING AQUEOUS/MINERAL OXIDE INTERFACES USING ULTRAFAST NONLINEAR VIBRATIONAL SPECTROSCOPY AND DYNAMICS OF IR PROBE MOLECULES

Mandal, Bijoya 05 1900 (has links)
Aqueous mineral oxide surfaces are ubiquitous in nature, where they play an important role in soil erosion, delta formation etc. Understanding the interfacial solvent environment at mineral oxide surfaces is important as many reactions, e.g., mineral dissolution, heterogeneous catalysis, and electrochemical water splitting occur at interfaces.Vibrational sum frequency generation (vSFG), a second-order nonlinear spectroscopic technique, inherently surface specific under the electric dipole approximation, serves as an excellent tool to study aqueous interfaces. vSFG is forbidden in centrosymmetric environments under the electric dipole approximation, making vSFG inherently specific to non-centrosymmetric environments such as surfaces, where the centrosymmetry is broken. vSFG is capable of measuring interfacial structure and dynamics without contributions from the bulk. Though vSFG has been extensively used to study aqueous interfaces yet there remain fundamental questions that need to be addressed. Is the interface capable of perturbing the environment of a centrosymmetric molecule to render it vSFG active? What higher order multipole terms contribute to vSFG? What are the vibrational energy relaxation pathways and mechanisms at oxide/water interfaces? In this dissertation, we have employed Stark active IR probe molecules (SCN-, N3-), that are sensitive to the local environment and whose frequency shifts depend on the localized electrostatic potential, to understand the interfacial solvent environment and measure the electrostatic potential associated with the charged sites at the aqueous Al2O3(0001) surface. The vibrational lifetime of IR probe molecules sheds information on solvent polarity, H-bonding network, and applied external electric fields. Hence, measuring the vibrational dynamics, whose timescales are comparable to the vibrational lifetime of the IR probe molecules, is a useful tool to understand vibrational energy relaxation (VER) pathways and mechanisms, specific solute-solvent interactions, and localized solvent environment. Though IR probe molecules have been employed to study bulk solvents, the literature for interfaces/surfaces is limited to reverse micelles, air/water interfaces and metal electrode surfaces. The VER rates of IR probe molecules (charged solutes) in bulk solvent and confined solvent environments are significantly different, which reflects the different local properties. The aim of this dissertation is to understand the localized solvent environment as well as the VER pathways and mechanisms of the IR probe molecule (SCN-) at the aqueous mineral oxide interfaces using IR pump-vSFG probe spectroscopy. Bulk H2O and D2O are similar in terms of H-bonding capability, static dielectric constant, and dipole moment. The FTIR spectra of the CN stretch of SCN- in bulk H2O and D2O share a similar central frequency, yet the measured vibrational lifetimes of SCN- reveal accelerated vibrational energy relaxation in bulk H2O vs. bulk D2O, indicating fundamental differences between the two solvent environments. This reflects distinct vibrational energy relaxation pathways. Probing the vibrational lifetime of the CN stretch of SCN- at the alumina(0001)/H2O and alumina(0001)/D2O interfaces enabled us to understand the effect of the interfacial solvent density of states on the solute-solvent vibrational coupling at interfaces. We observed three times faster vibrational energy relaxation (VER) for interfacial D2O (T1 ~7 ps) compared to bulk D2O (T1 ~22 ps). The lifetime of the CN stretch at the α-Al2O3(0001)/H2O interface (T1 ~3 ps) is, however, similar to the dynamics in bulk H2O (T1 ~ 2.7 ps) where effective coupling with the solvent combination band (water bending + librational modes) provides an efficient pathway for intermolecular vibrational energy transfer. Ab-initio simulations show that there is an increase in the vibrational density of states (VDOS) at the interface in the low-frequency region of the O-D stretch, resulting in greater overlap between SCN- and D2O vibrational modes compared to the bulk D2O. The VDOS is not the only factor determining VER. At the interface, there are likely enhanced solute-solvent interactions due to increased transition dipole – transition dipole coupling, as a result of reduced dielectric constant and more net oriented molecules. The two factors (a) availability of accessible energy-accepting states of the solvent and (b) increased solute-solvent coupling, cause acceleration in the vibrational relaxation at the alumina/D2O interface. This work provides insight into the vibrational relaxation pathways and coupling between solute and solvent vibrational modes, which is essential for understanding fundamental condensed phase phenomena in the bulk as well as at interfaces. Our research suggests that VER dynamics cannot be generalized for all interfaces as there are significant differences between how charged solutes behave within confined reverse micelles, at the air/water interface, and at solid/water interfaces. In this dissertation, the basic question of the origin of non-centrosymmetry is also addressed by studying the steady state vSFG response from the azido stretch of N3-, a centrosymmetric molecule, at the α-Al2O3 (0001)/H2O interface. We observed the azide asymmetric stretch peak at the aqueous alumina interface demonstrating that the interface sufficiently perturbs the centrosymmetric environment of the azide ion to make it vSFG active, thereby re-emphasizing the surface-specificity of the vSFG technique. DFT calculations revealed that the application of an external electric field (in the range 0.1 - 0.5 V/Å, similar to the ones typically observed at interfaces), 1-3 the centrosymmetry of the azide ion is broken, introducing Raman activity to the previously IR only active mode (asymmetry azide stretch) thereby making the mode vSFG active. Unlike metal surfaces, where the electrostatic potential is homogeneously distributed over the surface, mineral oxide surfaces have localized and spatially heterogeneous charged sites depending on the bulk pH solution, due to protonation/deprotonation of terminal hydroxyl groups. We employed the asymmetric stretching frequency of N3, an IR probe molecule, that is sensitive to the local solvent environment and applied electric potential to determine the localized interfacial electrostatic potential. Having demonstrated that the interface perturbs the centrosymmetry of N3-, shifts in the central frequency of its asymmetric stretch mode can be used to report on the interfacial localized surface potential of the Al2O3 surfaces. Our previous work using Stark active SCN- to probe the localized charged sites of the alumina (0001)/H2O interface led to the foundation of vSFG spectroscopy as a probe of the local electrostatic potential. Using the N3- Stark tuning rate, the localized electrostatic potential at the negatively charged Al-O- sites was measured to be -170 mV, similar to the one measured by SCN- (-154 mV). In this dissertation, we expand the library of nitrile groups that can be used to measure the interfacial electrostatic potential by using N3-, another Stark active IR molecule, while probing the origin of non-centrosymmetry in this centrosymmetric molecule at mineral oxide/water interfaces. / Chemistry
2

Characterizing Heterogeneously Charged Mineral Oxide Surfaces Using Nonlinear Spectroscopy

Piontek, Stefan Mathew January 2019 (has links)
Mineral oxide/aqueous interfaces play an important role in the transport of water through aquafers and streams, erosion, the formation of beaches and river deltas, nuclear waste storage, the sequestration and filtration of small ions, and are widely used in industrial scale catalysis. Unlike metal or semiconductor electrodes, the surface charge resulting from the protonation or deprotonation of insulating mineral oxides is highly localized and heterogeneous in nature. While the unique acid/base chemistry associated with different mineral oxide surfaces leads to their wide variety of applications, the extent to which surface groups found on mineral oxides partake in acid/base chemistry is still controversial due to the difficulty associated with experimentally probing them. Surface specific spectroscopic techniques, such as vibrational Sum Frequency Generation (vSFG), provide an opportunity to investigate how the surface architecture and corresponding chemical nature of various mineral oxide surfaces orient the interfacial solvent at a variety of solvent compositions and surface charges. Although vSFG has been used as a tool to measure the orientation and composition of interfacial O-H species originating from the surface and solvent for many mineral oxide/aqueous interfaces since the late 1990’s, controversy still exists in the assignment of vSFG spectra in the O-H stretching region of SiO2, Al2O3, CaF2, and TiO2/aqueous interfaces. The first section of this dissertation focuses on how the nonlinear optics and computational community’s understanding of the structure associated with mineral oxide/aqueous interfaces has evolved and where it stands now. Of particular interest is how the addition of electrolyte and variation of bulk pH allow modulation of the depth of the interfacial region and surface charge. Electrolyte solutions can vary the length of the interface by screening interfacial charges through non-specific adsorption at the interface, or generating surface charge if accumulation is facilitated by specific adsorption. The specific interaction of small ions with mineral oxide surfaces is relevant in geochemistry and filtration technology, and can also aid in prediction of contaminant mobility in ground water systems. Chapters two and three discuss the theory and application of vSFG, and the experimental setup used to capture vSFG spectra in this work, respectively. The fourth chapter investigates how monovalent or divalent cations accumulate at alpha-Al2O3(0001)/H2O interfaces and reorganize the interfacial solvent structure. The reactivity of these interfaces is strongly impacted by the presence of ions. Thus, it is critical to understand how ions alter the interfacial environment. This is achieved by measuring the changes in the structure and vibrational dynamics of interfacial water induced by the presence of ions in close vicinity to the mineral surface. The alpha-Al2O3(0001) surface represents a flexible platform to study the effect of ions on interfacial aqueous environments at positive, neutral and negative surface charge. Using vibrational sum frequency generation (vSFG) in the frequency and time domain, we investigate how monovalent and divalent cations affect the hydrogen bonding environment of the first few layers of interfacial water next to an alpha-Al2O3(0001) surface. Our results indicate that monovalent cations, such as Li+, Na+, K+, and Cs+, appear to have lower adsorption affinities for the interface compared to Ca2+, Sr2+, and Ba2+. This leads to an interfacial region that is structured in a cation valence dependent manner. Time resolved vSFG measurements reveal that the O-H vibrational lifetime (T1) of interfacial species at pH 10 conditions in the presence of NaCl and BaCl2 remains similar, but restructuring of the surface seen in steady state vSFG is manifested in the degree to which strongly hydrogen bonded species recover to their original populations post excitation. By tracking the accumulation of ions at the interface via the vSFG response, we can characterize the unique surface arrangements of interfacial water molecules induced by a range of monovalent and divalent cations at the alpha-Al2O3(0001)/water interface. In the fifth chapter the Stark active C ≡ N stretch of potassium thiocyanate is used as a molecular probe of interfacial electrostatic potential at the alpha-Al2O3(0001)/H2O interface. We confirm the presence of the thiocyanate ion in the interfacial region via reorganization of surface waters in the O-H stretching region. Changes in electrostatic potential are then tracked via Stark shifts of the vibrational frequency of the C ≡ N stretch. Our vSFG measurements show that we can simultaneously measure the SFG response of SCN- ions experiencing charged and neutral surface sites and assign a local potential of + 308 mV and -154 mV to positively and negatively charged aluminol groups, respectively. Thiocyanate anions at charged surface sites adopt similar relative orientations independent of surface charge, but adopt an opposite orientation at neutral surface sites. MD-DFT simulations of SCN- near the neutral alpha-Al2O3(0001)//H2O interface show that the vSFG response in the C ≡ N stretch region originates from a SCN-H-O-Al complex, suggesting the surface site specificity of these experiments. By tracking how this molecular probe responds to local surface charges we offer insight into the local electrostatic potential at neutral and charged surface aluminol groups. Chapter six investigates the vibrational dynamics of potassium thiocyanate at the alumina/water interface. Here, we leverage the sensitivity of the C ≡ N stretch vibrational lifetime of potassium thiocyanate to measure the local electrostatic potential at the alpha-Al2O3(0001)/H2O interface. To accomplish this, KSCN was investigated using free induction decay vSFG (FID-vSFG) and time resolved pump probe (TR-vSFG) measurements, which measure the total dephasing time and vibrational lifetime of the excited C ≡ N stretch, respectively. Our FID-vSFG spectra suggest that at all surface charges the total dephasing time of SCN- is on the order of ~300-600 fs. TR-vSFG characterizations of potassium thiocyanate report the vibrational lifetime of the excited C ≡ N stretch between ~0.5-2 ps. TR-vSFG measurements show two distinct vibrational relaxation rates, which are assigned the CN stretch and the HOH bend plus libration combination band of interfacial water. The variation in the T1 lifetime of the CN stretch with bulk pH show that changes in the SCN- net orientation measured using steady-state vSFG can be correlated to the vibrational dynamics in the interfacial region. The energy transfer to the bend plus libration combination band of water is also sensitive to the surface charge, as the lifetime of this species becomes shorter as the bulk pH is increased. Lastly, in chapter seven this thesis is summarized, and future directions of the experiments presented here are discussed. / Chemistry

Page generated in 0.2358 seconds