• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pore water chemistry reveals gradients in mineral transformation across a model basaltic hillslope

Pohlmann, Michael, Dontsova, Katerina, Root, Robert, Ruiz, Joaquin, Troch, Peter, Chorover, Jon 06 1900 (has links)
The extent of weathering incongruency during soil formation from rock controls local carbon and nutrient cycling in ecosystems, as well as the evolution of hydrologic flow paths. Prior studies of basalt weathering, including those that have quantified the dynamics of well-mixed, bench-scale laboratory reactors or characterized the structure and integrated response of field systems, indicate a strong influence of system scale on weathering rate and trajectory. For example, integrated catchment response tends to produce lower weathering rates than do well mixed reactors, but the mechanisms underlying these disparities remain unclear. Here we present pore water geochemistry and physical sensor data gathered during two controlled rainfall-runoff events on a large-scale convergent model hillslope mantled with 1 m uniform depth of granular basaltic porous media. The dense sampler and sensor array (1488 samplers and sensors embedded in 330 m(3) of basalt) showed that rainfall-induced dissolution of basaltic glass produced supersaturation of pore waters with respect to multiple secondary solids including allophane, gibbsite, ferrihydrite, birnessite and calcite. The spatial distribution of saturation state was heterogeneous, suggesting an accumulation of solutes leading to precipitation of secondary solids along hydrologic flow paths. Rapid dissolution of primary silicates was widespread throughout the entire hillslope, irrespective of up-gradient flowpath length. However, coherent spatial variations in solution chemistry and saturation indices were observed in depth profiles and between distinct topographic regions of the hillslope. Colloids (110-2000 nm) enriched in iron (Fe), aluminum (Al), and phosphorus (P) were mobile in soil pore waters.
2

Fe(II)-catalyzed transformation of ferrihydrite associated with natural organic matter

Zhou, Zhe 01 December 2018 (has links)
The association between natural organic matter (NOM) and iron (Fe) minerals was widely found in soil and sediments and has been shown to impact the fate of Fe minerals and NOM. Ferrihydrite, a ubiquitous Fe mineral, serves as important sink for NOM and rapidly transforms to secondary Fe minerals in the presence of Fe(II). The associated NOM has been found to influence the Fe(II)-catalyzed ferrihydrite transformation pathway, but it remains unclear how various NOM affects this transformation and the implication. This study specifically investigates how different species of NOM affect Fe(II)-catalyzed ferrihydrite transformation under different C/Fe ratios. A series of Fe isotope tracer experiments were conducted to measure Fe atom exchange and electron transfer between aqueous Fe(II) and ferrihydrite in the presence of diverse NOM species. The fate of Ni during Fe(II)-catalyzed transformation of NOM-Fh coprecipitate was also investigated. Ferrihydrite was found less susceptible to Fe(II)-catalyzed transformation with increasing C/Fe ratio and fulvic acids and Suwannee River NOM (SRNOM) in the coprecipitates need lower C/Fe ratio than humic acids to completely inhibit formation of secondary Fe minerals. At C/Fe ratios where ferrihydrite transformed to secondary minerals, goethite was dominant in ferrihydrite coprecipitated with humic acids, whereas lepidocrocite was favored in ferrihydrite coprecipitated with fulvic acids and SRNOM. Adsorbed SRNOM may be more inhibitive than coprecipitated SRNOM on Fe(II)-catalyzed ferrihydrite transformation under similar C/Fe ratios. Despite no secondary mineral transformation at high C/Fe ratios, Mössbauer spectra indicated electron transfer still occurred between Fe(II) and ferrihydrite coprecipitated with fulvic acid and SRNOM. In addition, isotope tracer experiments revealed that a significant fraction of structural Fe(III) in the ferrihydrite mixed with the aqueous phase Fe(II) (~85%). After reaction with Fe(II), Mössbauer spectroscopy indicated some subtle changes in the crystallinity, particle size or particle interactions in the coprecipitate. The effect of coprecipitated SRNOM on Ni(II) distribution during Fe(II)-catalyzed ferrihydrite transformation was investigated with adsorbed Ni(II) and coprecipitated Ni(II). Ni(II) adsorbed on ferrihydrite was more resistant to acid extraction after Fe(II)-catalyzed transformation and suggested that structural incorporation of Ni into secondary Fe minerals occurred. With coprecipitated SRNOM, ferrihydrite did not transform to secondary minerals in the presence of Fe(II) but extensive Fe atom exchange between aqueous Fe(II) and structural Fe(III) still occurred. Limited change in Ni stability was observed, suggesting there was only small portion of Ni redistributed in the presence of Fe(II). Pre-incorporated Ni(II) in Ni-SRNOM-Fh coprecipitate was partially released (6-8 %) in the presence of Fe(II), but the distribution of remaining Ni(II) in the solid did not change measurably. Our observation suggests that the presence of SRNOM limited the redistribution of Ni most likely because of limited transformation of ferrihydrite to secondary minerals.
3

A study into the fundamental understanding of iron-transformations and the effect of iron as fluxing agent on Highveld fine coal sources during gasification / by Christoffel Bernardus Prinsloo

Prinsloo, Christoffel Bernardus January 2008 (has links)
Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2009.
4

A study into the fundamental understanding of iron-transformations and the effect of iron as fluxing agent on Highveld fine coal sources during gasification / by Christoffel Bernardus Prinsloo

Prinsloo, Christoffel Bernardus January 2008 (has links)
Coal, as energy resource, possesses numerous characteristics and properties which all have an influence on its gasification behaviour. The two properties considered critically important when evaluating a coal source for gasification are its mineral content and slagging behaviour. Research has indicated that slag formation can be inhibited or even prevented by the addition of a fluxing agent. It is thus of great importance to understand the mineral interaction during gasification, in order to select a suitable fluxing agent for the prevention of slagging and clinker formation in the gasifier. The aim of this dissertation is to evaluate the slagging properties of a coal source with the addition of iron as a fluxing agent and to study the transformation of the mineral and added iron during gasification. A pre-determined amount of elemental iron (between 2 and 20 percentage by mass) was added to three different coal samples obtained from Sasol's operations in South Africa. The transformation of the iron in conjunction with the possible iron-containing minerals present in the coal was studied by means of Mossbauer spectroscopy. Typical characterisation analyses were also carried out on the original coal samples. The ash fusion temperature analyses (AFT) were used to study the slagging behaviour of the iron-spiked coal samples. Even though AFT analyses only provide an average flow property, it gives a good indication of the changes that the iron addition induces in coal properties. FactSage modelling was carried out in conjunction with the Mossbauer and AFT analyses. The AFT analysis on all of the samples indicated that the iron addition led to a 20% decrease in the AFT of all three the coal samples. The decrease observed, can be attributed to three main reasons: Formation of lower melting iron-containing phases, bridging of oxygen bonds by FeO and Fe203and the lowering of the viscosity by the iron-oxides, mainly hematite. Mossbauer spectra of the three original coal samples indicated that pyrite was the only iron-bearing mineral present / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2009.
5

A study into the fundamental understanding of iron-transformations and the effect of iron as fluxing agent on Highveld fine coal sources during gasification / by Christoffel Bernardus Prinsloo

Prinsloo, Christoffel Bernardus January 2008 (has links)
Coal, as energy resource, possesses numerous characteristics and properties which all have an influence on its gasification behaviour. The two properties considered critically important when evaluating a coal source for gasification are its mineral content and slagging behaviour. Research has indicated that slag formation can be inhibited or even prevented by the addition of a fluxing agent. It is thus of great importance to understand the mineral interaction during gasification, in order to select a suitable fluxing agent for the prevention of slagging and clinker formation in the gasifier. The aim of this dissertation is to evaluate the slagging properties of a coal source with the addition of iron as a fluxing agent and to study the transformation of the mineral and added iron during gasification. A pre-determined amount of elemental iron (between 2 and 20 percentage by mass) was added to three different coal samples obtained from Sasol's operations in South Africa. The transformation of the iron in conjunction with the possible iron-containing minerals present in the coal was studied by means of Mossbauer spectroscopy. Typical characterisation analyses were also carried out on the original coal samples. The ash fusion temperature analyses (AFT) were used to study the slagging behaviour of the iron-spiked coal samples. Even though AFT analyses only provide an average flow property, it gives a good indication of the changes that the iron addition induces in coal properties. FactSage modelling was carried out in conjunction with the Mossbauer and AFT analyses. The AFT analysis on all of the samples indicated that the iron addition led to a 20% decrease in the AFT of all three the coal samples. The decrease observed, can be attributed to three main reasons: Formation of lower melting iron-containing phases, bridging of oxygen bonds by FeO and Fe203and the lowering of the viscosity by the iron-oxides, mainly hematite. Mossbauer spectra of the three original coal samples indicated that pyrite was the only iron-bearing mineral present / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2009.
6

O<sub>2</sub>, Fe(III) mineral phase and depth controls on Fe metabolism in acid mine drainage derived iron mounds

Burwick, John E. 14 September 2015 (has links)
No description available.

Page generated in 0.1531 seconds