Spelling suggestions: "subject:"mineralogia e metrologia"" "subject:"mineralogia e petrologia""
1 |
Furcalita e outros minerais uraniferos secundarios de Perus, SPAtencio, Daniel 12 July 1991 (has links)
Furcalita ocorre como preenchimento de fraturas no pegmatito granítico de Perus, noroeste do município de São Paulo, Brasil, constituindo agregados radiados de cristais eudrais de até 5 mm de comprimento. Os cristais apresentam cor amarelo-vivo, são transparentes e de brilho vítreo a adamantino. A cor do traço é amarelo-claro. A furcalita é quebradiça e apresenta fratura conchoidal. O mineral não é fluorescente. Dureza de Vickers = 86 - 95 (média 90,5) kg/mm², dureza de Mohs calculada 2,4. \'D IND. medida\'4,22(4), \'D IND. calc.\' 4,220 g/cm³. Opticamente, o mineral é biaxial (-), com \'alfa\' 1,677(2), \'beta\' 1,732(2), \'gama\' 1,766(2), 2\'Vx IND. medido\'75°, 2\'Vx IND. calc.\' 74°. A fórmula pleocróica é X = amarelo claro, Y = amarelo, Z = amarelo ouro, X = b, Y = a, Z = c, absorção X < Y < Z, dispersão r > v média, elongação positiva. O mineral é ortorrômbico, grupo espacial Pbca, a 17,415(2), b 16,035(3), c 13,598(3) A, V 3.797(2) A³, Z= 8. As sete reflexões mais intensas do padrão de difração de raios X [d em A (I)(hkl)] são 8,863(3) (111 e 200), 8,014(100)(020), 7,648(3)(210), 4,008(15) (040), 3,844(4) (041), 3,128(3)(024) e 3,100(3) (502). A fórmula analítica, derivada de análises por microssonda eletrônica, é \'(\'Ca IND. 1,97\'\'K IND. 0,05\') IND. \'SIGMA\'2,02\'\'(U\'O IND. 2\') IND. 2,87\'\'O IND. 1,93\'\'[\'(P\'O IND. 4\') IND. 1,90\'\'(Si\'O IND. 4\') IND. 0,04\'] IND. \'SIGMA\'1,94\' . 7,57\'H IND. 2\'O. A curva de DTA apresenta um pico endotérmico em 150°C, correspondente a perda de \'H IND. 2\'O, confirmada por TGA, e fusão a 900°C. O espectro IR apresenta bandas de \'H IND. 2\'O, P\'O IND. 4\' e U\'O IND. 2\'. Furcalita é insolúvel em água e solúvel em HCI, HN\'O IND. 3\' e \'H IND. 2\'S\'O IND. 4\', todos em concentração 1:1, a frio. A compatibilidade Gladstone-Dale é superior. Furcalita forma-se, provavelmente, a T \'< ou =\' 150°C. A estrutura cristalina da furcalita foi resolvida por métodos de difração de raios X de cristal único e refinada até R = 3,8% usando 2.065 reflexões observadas [I > 3\'sigma\'(I)]. A estrutura consiste de camadas \'[\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'] IND. N POT. 4n-\', paralelas a (010), conectadas por íons \'Ca Pot. 2+\' e \'H IND. 2\'O. Os poliedros de coordenação são: para U(1) bipirâmide hexagonal; para U(2) e U(3) bipirâmides pentagonais; para Ca(4) e Ca(5) prisma trigonal monoencapuzado e dodecaedro triangulado, respectivamente; e para P(6) e P(7) tetraedros. Como consequência deste trabalho, a fórmula molecular da furcalita, previamente citada como \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'(P\'O IND. 4\') IND. 2\'\'(OH) IND. 4\'. 4\'H IND. 2\'O deve ser modificada para \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 7\'H IND. 2\'O. Outros minerais secundários de urânio associados à furcalita de Perus são autunita, torbernita, meta-autunita, meta-torbernita, chernikovita, meta-uranocircita, fosfuranilita, uranofânio-alfa, uranofânio-beta, haiweeíta, weeksita rica em bário, e, talvez, também bassetita, meta-tyuyamunita e meta-haiweeíta. Opala, tridimita, cristobalita, quartzo secundário, saponita e rodocrosita ocorrem associados aos minerais de urânio. Chernikovita é um novo nome de mineral proposto para \'(\'H IND. 3\'O) IND. 2\'\'(U\'O IND. 2\') IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 6\'H IND. 2\'O em substituição a \"hidrogênio autunita\". A proposta para abandonar o nome \"hidrogênio autunita\" foi efetuada porque (a) o mineral contém íons oxônio (\'H IND. 3\'\'O POT. +\'); (b) o grau de hidratação não é aquele de minerais do grupo da autunita; e (c) o termo \"hidrogênio autunita\" foi utilizado para outros compostos naturais e artificiais. / Phurcalite has been found filling fractures in the tourmaline-bearing granitic pegmatite of Perus, in the north-west part of São Paulo city, Brazil. It forms aggregates of radiating euhedral crystals up to 5 mm in length. The crystals are bright yellow, transparent and display vitreous to adamantine lustre. Its streak is pale yellow. Phurcalite is brittle, with a conchoidal fracture, and non-fluorescent. Vickers hardness = 86 - 95 (av. 90.5) kg/mm², calculated. Mohs hardness about 2.4. \'D IND. meas.\'4.22(4), \'D IND. calc.\' 4.220 g/cm³. Optically, the mineral is biaxial (-), with \'alfa\' 1.677(2), \'beta\' 1.732(2), \'gama\' 1.766(2), 2\'Vx IND. meas.\'75°, 2\'Vx IND. calc.\' 74°. Pleochroic scheme is X = pale yellow, Y = yellow, Z = golden yellow, X = b, Y = a, Z = c, absorption X < Y < Z, dispersion r > v medium, positive elongation. The mineral is orthorhombic, space group Pbca, a 17.475(2), b 16.035(3), c 13.598(3) A, V 3797(2) A³, Z = 8. The strongest seven lines of the X-ray diffraction pattern [d in A (I)(hkl)] are 8.863(3)(111 and 200), 8.014(100) (020), 7.648(3)(210), 4.008(15)(040), 3.844(4)(041), 3.128(3)(024) and 3.100(3) (502). The analytical formula, derived from microprobe analysis, is \'(\'Ca IND. 1.97\'\'K IND. 0.05) IND. \'SIGMA\'2.02\'\'(U\'O IND. 2\') IND. 2.87\'\'O IND. 1.93\'\'[\'(P\'O IND. 4) IND. 1.90\'\'(Si\'O IND. 4\') IND. 0.04\'] IND. \'SIGMA\'1.94\' . 7,57\'H IND. 2\'O. The DTA curve shows an endothermic peak at 150°C, corresponding to loss of \'H IND. 2\'O, as confirmed by TGA, and melting at 900°C. IR spectrum show bands of \'H IND. 2\'O, P\'O IND. 4\' e U\'O IND. 2\'. Phurcalite is insoluble in water and soluble in cold 1:1 HCI, HN\'O IND. 3\' e \'H IND. 2\'S\'O IND. 4\'. Gladstone-Dale compatibility is superior. Phurcalite is probably formed at T \'< OU =\' 150°C. The crystal structure of phurcalite has been solved by single-crystal X-ray diffraction methods and refined to R = 3.8% using 2065 observed [I > 3\'sigma\'(I)] reflections. The structure consists of \'[\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'] IND. n POT. 4n-\' layers, parallel to (010), connected by \'Ca Pot. 2+\' and \'H IND. 2\'O. The coordination polyhedra are: for U(1) hexagonal bipyramid; for U(2) and U(3) pentagonal bipyramids; for Ca(4) and Ca(5) capped trigonal prism and triangulated dodecahedron, respectively; and for P(6) and P(7) tetratredra. As a consequence of this work, the molecular formula of phurcalite previously reported as \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'(P\'O IND. 4\') IND. 2\'\'(OH) IND. 4\'. 4\'H IND. 2\'O must be changed to \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 7\'H IND. 2\'O. Other secondary uranium minerals associated with Perus phurcalite are autunite, torbernite, meta-autunite, meta-torbernite, chernikovite, meta-uranocircite I, phosphuranylite, uranophane-alpha, uranophane-beta, haiweeite, barian weeksite and perhaps also bassetite, meta-tyuyamunite and meta-haiweeite. Opal, tridymite, cristobalite, secondary quartz, saponite and rhodochrosite occur associated to the uranium minerals. Chernikovite is a new mineral name proposed for \'(\'H IND. 3\'O) IND. 2\'\'(U\'O IND. 2\') IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 6\'H IND. 2\'O superseding \"hydrogen autunite\". The proposal to discard the name \"hydrogen autunite\" has been made because (a) the mineral contains \'H IND. 3\'\'O POT. +\' ions; (b) the degree of hydration is not that of an autunite-group mineral; and (c) the term \"hydrogen autunite\" has been used for other natural and artificial compounds.
|
2 |
Furcalita e outros minerais uraniferos secundarios de Perus, SPDaniel Atencio 12 July 1991 (has links)
Furcalita ocorre como preenchimento de fraturas no pegmatito granítico de Perus, noroeste do município de São Paulo, Brasil, constituindo agregados radiados de cristais eudrais de até 5 mm de comprimento. Os cristais apresentam cor amarelo-vivo, são transparentes e de brilho vítreo a adamantino. A cor do traço é amarelo-claro. A furcalita é quebradiça e apresenta fratura conchoidal. O mineral não é fluorescente. Dureza de Vickers = 86 - 95 (média 90,5) kg/mm², dureza de Mohs calculada 2,4. \'D IND. medida\'4,22(4), \'D IND. calc.\' 4,220 g/cm³. Opticamente, o mineral é biaxial (-), com \'alfa\' 1,677(2), \'beta\' 1,732(2), \'gama\' 1,766(2), 2\'Vx IND. medido\'75°, 2\'Vx IND. calc.\' 74°. A fórmula pleocróica é X = amarelo claro, Y = amarelo, Z = amarelo ouro, X = b, Y = a, Z = c, absorção X < Y < Z, dispersão r > v média, elongação positiva. O mineral é ortorrômbico, grupo espacial Pbca, a 17,415(2), b 16,035(3), c 13,598(3) A, V 3.797(2) A³, Z= 8. As sete reflexões mais intensas do padrão de difração de raios X [d em A (I)(hkl)] são 8,863(3) (111 e 200), 8,014(100)(020), 7,648(3)(210), 4,008(15) (040), 3,844(4) (041), 3,128(3)(024) e 3,100(3) (502). A fórmula analítica, derivada de análises por microssonda eletrônica, é \'(\'Ca IND. 1,97\'\'K IND. 0,05\') IND. \'SIGMA\'2,02\'\'(U\'O IND. 2\') IND. 2,87\'\'O IND. 1,93\'\'[\'(P\'O IND. 4\') IND. 1,90\'\'(Si\'O IND. 4\') IND. 0,04\'] IND. \'SIGMA\'1,94\' . 7,57\'H IND. 2\'O. A curva de DTA apresenta um pico endotérmico em 150°C, correspondente a perda de \'H IND. 2\'O, confirmada por TGA, e fusão a 900°C. O espectro IR apresenta bandas de \'H IND. 2\'O, P\'O IND. 4\' e U\'O IND. 2\'. Furcalita é insolúvel em água e solúvel em HCI, HN\'O IND. 3\' e \'H IND. 2\'S\'O IND. 4\', todos em concentração 1:1, a frio. A compatibilidade Gladstone-Dale é superior. Furcalita forma-se, provavelmente, a T \'< ou =\' 150°C. A estrutura cristalina da furcalita foi resolvida por métodos de difração de raios X de cristal único e refinada até R = 3,8% usando 2.065 reflexões observadas [I > 3\'sigma\'(I)]. A estrutura consiste de camadas \'[\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'] IND. N POT. 4n-\', paralelas a (010), conectadas por íons \'Ca Pot. 2+\' e \'H IND. 2\'O. Os poliedros de coordenação são: para U(1) bipirâmide hexagonal; para U(2) e U(3) bipirâmides pentagonais; para Ca(4) e Ca(5) prisma trigonal monoencapuzado e dodecaedro triangulado, respectivamente; e para P(6) e P(7) tetraedros. Como consequência deste trabalho, a fórmula molecular da furcalita, previamente citada como \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'(P\'O IND. 4\') IND. 2\'\'(OH) IND. 4\'. 4\'H IND. 2\'O deve ser modificada para \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 7\'H IND. 2\'O. Outros minerais secundários de urânio associados à furcalita de Perus são autunita, torbernita, meta-autunita, meta-torbernita, chernikovita, meta-uranocircita, fosfuranilita, uranofânio-alfa, uranofânio-beta, haiweeíta, weeksita rica em bário, e, talvez, também bassetita, meta-tyuyamunita e meta-haiweeíta. Opala, tridimita, cristobalita, quartzo secundário, saponita e rodocrosita ocorrem associados aos minerais de urânio. Chernikovita é um novo nome de mineral proposto para \'(\'H IND. 3\'O) IND. 2\'\'(U\'O IND. 2\') IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 6\'H IND. 2\'O em substituição a \"hidrogênio autunita\". A proposta para abandonar o nome \"hidrogênio autunita\" foi efetuada porque (a) o mineral contém íons oxônio (\'H IND. 3\'\'O POT. +\'); (b) o grau de hidratação não é aquele de minerais do grupo da autunita; e (c) o termo \"hidrogênio autunita\" foi utilizado para outros compostos naturais e artificiais. / Phurcalite has been found filling fractures in the tourmaline-bearing granitic pegmatite of Perus, in the north-west part of São Paulo city, Brazil. It forms aggregates of radiating euhedral crystals up to 5 mm in length. The crystals are bright yellow, transparent and display vitreous to adamantine lustre. Its streak is pale yellow. Phurcalite is brittle, with a conchoidal fracture, and non-fluorescent. Vickers hardness = 86 - 95 (av. 90.5) kg/mm², calculated. Mohs hardness about 2.4. \'D IND. meas.\'4.22(4), \'D IND. calc.\' 4.220 g/cm³. Optically, the mineral is biaxial (-), with \'alfa\' 1.677(2), \'beta\' 1.732(2), \'gama\' 1.766(2), 2\'Vx IND. meas.\'75°, 2\'Vx IND. calc.\' 74°. Pleochroic scheme is X = pale yellow, Y = yellow, Z = golden yellow, X = b, Y = a, Z = c, absorption X < Y < Z, dispersion r > v medium, positive elongation. The mineral is orthorhombic, space group Pbca, a 17.475(2), b 16.035(3), c 13.598(3) A, V 3797(2) A³, Z = 8. The strongest seven lines of the X-ray diffraction pattern [d in A (I)(hkl)] are 8.863(3)(111 and 200), 8.014(100) (020), 7.648(3)(210), 4.008(15)(040), 3.844(4)(041), 3.128(3)(024) and 3.100(3) (502). The analytical formula, derived from microprobe analysis, is \'(\'Ca IND. 1.97\'\'K IND. 0.05) IND. \'SIGMA\'2.02\'\'(U\'O IND. 2\') IND. 2.87\'\'O IND. 1.93\'\'[\'(P\'O IND. 4) IND. 1.90\'\'(Si\'O IND. 4\') IND. 0.04\'] IND. \'SIGMA\'1.94\' . 7,57\'H IND. 2\'O. The DTA curve shows an endothermic peak at 150°C, corresponding to loss of \'H IND. 2\'O, as confirmed by TGA, and melting at 900°C. IR spectrum show bands of \'H IND. 2\'O, P\'O IND. 4\' e U\'O IND. 2\'. Phurcalite is insoluble in water and soluble in cold 1:1 HCI, HN\'O IND. 3\' e \'H IND. 2\'S\'O IND. 4\'. Gladstone-Dale compatibility is superior. Phurcalite is probably formed at T \'< OU =\' 150°C. The crystal structure of phurcalite has been solved by single-crystal X-ray diffraction methods and refined to R = 3.8% using 2065 observed [I > 3\'sigma\'(I)] reflections. The structure consists of \'[\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'] IND. n POT. 4n-\' layers, parallel to (010), connected by \'Ca Pot. 2+\' and \'H IND. 2\'O. The coordination polyhedra are: for U(1) hexagonal bipyramid; for U(2) and U(3) pentagonal bipyramids; for Ca(4) and Ca(5) capped trigonal prism and triangulated dodecahedron, respectively; and for P(6) and P(7) tetratredra. As a consequence of this work, the molecular formula of phurcalite previously reported as \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'(P\'O IND. 4\') IND. 2\'\'(OH) IND. 4\'. 4\'H IND. 2\'O must be changed to \'Ca IND. 2\'\'(U\'O IND. 2\') IND. 3\'\'O IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 7\'H IND. 2\'O. Other secondary uranium minerals associated with Perus phurcalite are autunite, torbernite, meta-autunite, meta-torbernite, chernikovite, meta-uranocircite I, phosphuranylite, uranophane-alpha, uranophane-beta, haiweeite, barian weeksite and perhaps also bassetite, meta-tyuyamunite and meta-haiweeite. Opal, tridymite, cristobalite, secondary quartz, saponite and rhodochrosite occur associated to the uranium minerals. Chernikovite is a new mineral name proposed for \'(\'H IND. 3\'O) IND. 2\'\'(U\'O IND. 2\') IND. 2\'\'(P\'O IND. 4\') IND. 2\'. 6\'H IND. 2\'O superseding \"hydrogen autunite\". The proposal to discard the name \"hydrogen autunite\" has been made because (a) the mineral contains \'H IND. 3\'\'O POT. +\' ions; (b) the degree of hydration is not that of an autunite-group mineral; and (c) the term \"hydrogen autunite\" has been used for other natural and artificial compounds.
|
3 |
Aspectos mineralógicos, genéticos e econômicos das ocorrências diamantíferas da região nordeste do Paraná e sul de São PauloChieregati, Luiz Antonio 16 October 1989 (has links)
As ocorrências diamantíferas do nordeste paranaense e sul do Estado de São Paulo são conhecidas desde meados do século passado, e vem sendo exploradas, de modo intermitente, até os dias de hoje. O diamante ocorre tanto em cascalheiros do leito atual dos rios, como também em aluviões recentes e antigos, constituindo os denominados \"monchões\". Os depósitos são em geral de pequenas dimensões, sendo raros aqueles que suportam um trabalho mecanizado de lavra e beneficiamento. O conteúdo de diamantes nos depósitos também é pequeno, variando os teores entre 0,04 e 0,08 ct/m³. A produção total dos garimpos oscila entre 400 e 1.000 ct/ano de diamantes além de pequena quantidade de ouro obtido como subproduto. As principais ocorrências situam-se na bacia do rio Tibaji, desde os arredores da cidade homônima até cerca de 50 Km a jusante de Telêmaco Borba. Outros rios diamantíferos são o Laranjinha, Cinzas, Jaguariaíva, Jaguaricatu, Itararé e Verde, este último integralmente no Estado de São Paulo. Do ponto de vista geológico, as ocorrências estão posicionadas sobre unidades estratigráficas do Devoniano, permo-Carbonífero e Permiano da bacia do Paraná, sendo rara a presença de depósitos mineralizados, sobre terrenos geologicamente mais antigos ou mais novos do que os mencionados. Além dos parâmetros econômicos e geológicos, os depósitos foram estudados quanto ao seu conteúdo minerológico, buscando-se caracterizar a fonte desses sedimentos bem como a eventual presença de minerais paragenéticos do diamante, indicativos de suas fontes primárias. Entre os minerais pesados verificou-se a predominância das fases ultra-estáveis, Zircão, Turmalina e Rutilo, além da presença marcante de ilmenita, magnetita, goethita, cromita e monazita. Subsidiariamente verificou-se a presença de granadas de cores variadas, anfibólitos, piroxênios, epidoto, estaurolita, apatita, xenotima, anatásio, espinélio verde, ouro e o próprio diamante. Determinações químicas por meio de microssonda eletrônica, efetuadas em granadas, ilmenitas e espinélios da região, não revelaram, entretanto, indícios da presença de kimberlitos. As granadas são constituídas principalmente da molécula de almandina, com pequenas proporções das moléculas de piropo e grossulária. As ilmenitas por sua vez apresentam baixo conteúdo de magnésio, não correspondendo às de natureza kimberlítica. Quanto à presença de minerais de lamproítos na área, os dados obtidos com os espinélios não permitem avançar muito nessa hipótese, já que as características dos mineirais-índice utilizados na prospecção dessas rochas não se encontram suficientemente divulgados na literatura especializada. No que se refere ao diamante, o mesmo é de pequenas dimensões, com peso médio de 0,10 ct não obstante termos registrados o achado de pedras com peso de até de 10 ct. O hábito predominante é o rombodecaédrico, seguido das formas de transição para o octaédro. Subordinadamente ocorrem cristais geminados, agregados policristalinos e o próprio octaédro, além de exemplares irregulares e fraturados. O diamante é predominantemente incolor e de qualidade gemológica. A origem desse diamante tem sido motivo de controvérsia ao longo dos tempos. A distribuição das ocorrências conhecidas, invariavelmente situadas sobre os terrenos paleozóicos da bacia do Paraná, sugere que o diamante esteja sendo liberado dos sedimentos rudáceos dessas unidades. Por outro lado, o balizamento das ocorrências pelas estruturas tectônicas do arco de Ponta Grossa e a presença de rochas alcalinas e alcalino-ultra-básicas na porção central dessa estrutura, permite supor a existência de rochas matrizes primárias do diamante, a elas associadas. Apesar das evidências apontarem para um modelo de reciclagem do diamante, a localização espacial e temporal de suas fontes primárias não deve ser abandonada, uma vez que seu entendimento traz uma importante contribuição para o conhecimento da evolução tectônica dessa porção de nosso continente. / Diamonds have been exploited in northeastern Paraná and southern São PauIo states since the middIe of the Iast century. The mineral occurs in alluvial, elluvial and colluvial deposits, in concentrations ranging from 0.04 up to 0.60 ct/m³, with annual output fIuctuating around 1000 ct/year. In addition, gold has been recovered as a by product of concentrates in many localities. The main occurences and deposits are located in the basins of Tibaji, Laranjinhas, Cinzas, Jaguariaíva and Itararé Rivers. Field surveys revealed that the deposits are reIated to the lower (Furnas Formation) and middle (ltararé Subgroup) portions of the Paleozoic sequences of the sedimentary Paraná Basin. Occurences on Precambrian basement seem to be rare and sporadic. In order to investigate the source of local diamonds, mineral concentrates were sistematically sampled at more then one hundred different targets within the area of recorded diamond exploitation. As identifìed by optical microscopy and X-ray diffraction the mineralogical assemblage comprises mgnetite, goethite, hematite, Iimonite, ilmenite, zircon, rutile, tourmaline, chromite, monazite, garnets, hornblende, epidote, staurolite, apatite, xenotime, anatase, gahnite, corundum, kyanite, gold and diamond. Garnets and ilmenites were analysed in the electron micro probe, in order to search for the primary source of local diamonds. Garnets are mainly magnesium-poor and chromium-depleted almandine. Magnesium and chromium are absent in ilmenites as well. There fore, the absence of Cr-pyrope garnet and Mg-ilmenite, the common mineral indicators of kimberlite, reinforces the hypothesis based on field work that the studied diamonds have been recycIed from the rudaceous units of the Paraná Basin. The study of several parceIs of diamonds from local deposits (garimpos) revealed grain sizes granulometry from 0.01 to 5.0 ct. Diamonds wejghing 10 or more carats have been recorded Occasionally. However, large stones of tens or even hundreds carats Iike those found in western Minas Gerais, have never been recorded in the Tibaji and neighboring areas. As commonly observed elsewhere in Brazil and most worlwide localities dodecahedra is the most common crystal Morphology, foIIowed by forms intermedi ate between dodecahedral and octahedral crystals. Unrounded octahedra, flat twins, pyramidal cube, polycrystalline aggregates, cleavage fragments and borts are less common. As previously observed crystalIine inclusions are mainlly olivine, garnet, spinel and sulphides. The great majority of the diamonds are colorless (90%), the remainder showing variations of green brown and yellow. It is estimated from the examination of parcels totalizing 5,000 carats that 70% are gemological diamonds. The origin of the diamond from Tibaji and neighboring areas has always been a matter of discussion. Apart from old ideas linking these diamonds to acid rocks or kimberlite sources Iocated in Southern Africa via pre-drift glacial transport, current hypothesis are centered on the possibility (or not) of primary sources in the area. Unfortunately, there is still little informations on the nature and distribution of the heavy minerals found together with the diamond, as well as on the geological and tectonics characteristics of the area. Although no kimberlite mineral was found during this research enhancing the possibiIity that the diamond has been recycled from the rudaceous units of the Paraná Basin, this result has to be interpreted in the light of the large size of the area investigated. On the other side until systematic surveys permit a firm conclusion as to the presence or absence of primary sources, the possibility of the presence of kimberlite and/or lamproite intrusions in the area can not be excluded, given the huge amount of basic/ultrabasic dikes associated with the ponta Grossa Arch.
|
4 |
Aspectos mineralógicos, genéticos e econômicos das ocorrências diamantíferas da região nordeste do Paraná e sul de São PauloLuiz Antonio Chieregati 16 October 1989 (has links)
As ocorrências diamantíferas do nordeste paranaense e sul do Estado de São Paulo são conhecidas desde meados do século passado, e vem sendo exploradas, de modo intermitente, até os dias de hoje. O diamante ocorre tanto em cascalheiros do leito atual dos rios, como também em aluviões recentes e antigos, constituindo os denominados \"monchões\". Os depósitos são em geral de pequenas dimensões, sendo raros aqueles que suportam um trabalho mecanizado de lavra e beneficiamento. O conteúdo de diamantes nos depósitos também é pequeno, variando os teores entre 0,04 e 0,08 ct/m³. A produção total dos garimpos oscila entre 400 e 1.000 ct/ano de diamantes além de pequena quantidade de ouro obtido como subproduto. As principais ocorrências situam-se na bacia do rio Tibaji, desde os arredores da cidade homônima até cerca de 50 Km a jusante de Telêmaco Borba. Outros rios diamantíferos são o Laranjinha, Cinzas, Jaguariaíva, Jaguaricatu, Itararé e Verde, este último integralmente no Estado de São Paulo. Do ponto de vista geológico, as ocorrências estão posicionadas sobre unidades estratigráficas do Devoniano, permo-Carbonífero e Permiano da bacia do Paraná, sendo rara a presença de depósitos mineralizados, sobre terrenos geologicamente mais antigos ou mais novos do que os mencionados. Além dos parâmetros econômicos e geológicos, os depósitos foram estudados quanto ao seu conteúdo minerológico, buscando-se caracterizar a fonte desses sedimentos bem como a eventual presença de minerais paragenéticos do diamante, indicativos de suas fontes primárias. Entre os minerais pesados verificou-se a predominância das fases ultra-estáveis, Zircão, Turmalina e Rutilo, além da presença marcante de ilmenita, magnetita, goethita, cromita e monazita. Subsidiariamente verificou-se a presença de granadas de cores variadas, anfibólitos, piroxênios, epidoto, estaurolita, apatita, xenotima, anatásio, espinélio verde, ouro e o próprio diamante. Determinações químicas por meio de microssonda eletrônica, efetuadas em granadas, ilmenitas e espinélios da região, não revelaram, entretanto, indícios da presença de kimberlitos. As granadas são constituídas principalmente da molécula de almandina, com pequenas proporções das moléculas de piropo e grossulária. As ilmenitas por sua vez apresentam baixo conteúdo de magnésio, não correspondendo às de natureza kimberlítica. Quanto à presença de minerais de lamproítos na área, os dados obtidos com os espinélios não permitem avançar muito nessa hipótese, já que as características dos mineirais-índice utilizados na prospecção dessas rochas não se encontram suficientemente divulgados na literatura especializada. No que se refere ao diamante, o mesmo é de pequenas dimensões, com peso médio de 0,10 ct não obstante termos registrados o achado de pedras com peso de até de 10 ct. O hábito predominante é o rombodecaédrico, seguido das formas de transição para o octaédro. Subordinadamente ocorrem cristais geminados, agregados policristalinos e o próprio octaédro, além de exemplares irregulares e fraturados. O diamante é predominantemente incolor e de qualidade gemológica. A origem desse diamante tem sido motivo de controvérsia ao longo dos tempos. A distribuição das ocorrências conhecidas, invariavelmente situadas sobre os terrenos paleozóicos da bacia do Paraná, sugere que o diamante esteja sendo liberado dos sedimentos rudáceos dessas unidades. Por outro lado, o balizamento das ocorrências pelas estruturas tectônicas do arco de Ponta Grossa e a presença de rochas alcalinas e alcalino-ultra-básicas na porção central dessa estrutura, permite supor a existência de rochas matrizes primárias do diamante, a elas associadas. Apesar das evidências apontarem para um modelo de reciclagem do diamante, a localização espacial e temporal de suas fontes primárias não deve ser abandonada, uma vez que seu entendimento traz uma importante contribuição para o conhecimento da evolução tectônica dessa porção de nosso continente. / Diamonds have been exploited in northeastern Paraná and southern São PauIo states since the middIe of the Iast century. The mineral occurs in alluvial, elluvial and colluvial deposits, in concentrations ranging from 0.04 up to 0.60 ct/m³, with annual output fIuctuating around 1000 ct/year. In addition, gold has been recovered as a by product of concentrates in many localities. The main occurences and deposits are located in the basins of Tibaji, Laranjinhas, Cinzas, Jaguariaíva and Itararé Rivers. Field surveys revealed that the deposits are reIated to the lower (Furnas Formation) and middle (ltararé Subgroup) portions of the Paleozoic sequences of the sedimentary Paraná Basin. Occurences on Precambrian basement seem to be rare and sporadic. In order to investigate the source of local diamonds, mineral concentrates were sistematically sampled at more then one hundred different targets within the area of recorded diamond exploitation. As identifìed by optical microscopy and X-ray diffraction the mineralogical assemblage comprises mgnetite, goethite, hematite, Iimonite, ilmenite, zircon, rutile, tourmaline, chromite, monazite, garnets, hornblende, epidote, staurolite, apatite, xenotime, anatase, gahnite, corundum, kyanite, gold and diamond. Garnets and ilmenites were analysed in the electron micro probe, in order to search for the primary source of local diamonds. Garnets are mainly magnesium-poor and chromium-depleted almandine. Magnesium and chromium are absent in ilmenites as well. There fore, the absence of Cr-pyrope garnet and Mg-ilmenite, the common mineral indicators of kimberlite, reinforces the hypothesis based on field work that the studied diamonds have been recycIed from the rudaceous units of the Paraná Basin. The study of several parceIs of diamonds from local deposits (garimpos) revealed grain sizes granulometry from 0.01 to 5.0 ct. Diamonds wejghing 10 or more carats have been recorded Occasionally. However, large stones of tens or even hundreds carats Iike those found in western Minas Gerais, have never been recorded in the Tibaji and neighboring areas. As commonly observed elsewhere in Brazil and most worlwide localities dodecahedra is the most common crystal Morphology, foIIowed by forms intermedi ate between dodecahedral and octahedral crystals. Unrounded octahedra, flat twins, pyramidal cube, polycrystalline aggregates, cleavage fragments and borts are less common. As previously observed crystalIine inclusions are mainlly olivine, garnet, spinel and sulphides. The great majority of the diamonds are colorless (90%), the remainder showing variations of green brown and yellow. It is estimated from the examination of parcels totalizing 5,000 carats that 70% are gemological diamonds. The origin of the diamond from Tibaji and neighboring areas has always been a matter of discussion. Apart from old ideas linking these diamonds to acid rocks or kimberlite sources Iocated in Southern Africa via pre-drift glacial transport, current hypothesis are centered on the possibility (or not) of primary sources in the area. Unfortunately, there is still little informations on the nature and distribution of the heavy minerals found together with the diamond, as well as on the geological and tectonics characteristics of the area. Although no kimberlite mineral was found during this research enhancing the possibiIity that the diamond has been recycled from the rudaceous units of the Paraná Basin, this result has to be interpreted in the light of the large size of the area investigated. On the other side until systematic surveys permit a firm conclusion as to the presence or absence of primary sources, the possibility of the presence of kimberlite and/or lamproite intrusions in the area can not be excluded, given the huge amount of basic/ultrabasic dikes associated with the ponta Grossa Arch.
|
Page generated in 0.0908 seconds