Spelling suggestions: "subject:"lines (bilitary explosive)"" "subject:"lines (hilitary explosive)""
31 |
Time-Reversal Techniques in Seismic Detection of Buried ObjectsNorville, Pelham D. 02 April 2007 (has links)
An investigation is presented of the behavior of time-reversal focusing in soils. Initial numerical models demonstrate time-reversal focusing to be effective in elastic media, including when a large number of scattering objects were present in the medium. When scattering objects are present, time-reversal focusing demonstrates superior focusing ability when compared to other excitation methods such as uniform excitation or time-delay focusing.
Multiple experimental investigations of experimental time-reversal focusing performed in sand evaluate time-reversal focusing effectiveness when multiple near-surface scattering objects are present in the medium. Experimental results demonstrate that time-reversal focusing is effective in the experimental context as well as the numerical models. Further experiments examine time-reversal focusing in more extreme cases where the entire
ballistic wave is blocked, and the only energy reaching the focus point is reflected from scattering objects in the medium. A comparison to other focusing methods demonstrates that under these conditions, most focusing attempts with traditional methods will fail completely while time-reversal focusing does not. Additional configurations of time-reversal focusing examine its effectiveness when scattering is caused by an asymmetrical surface layers. The impact of an asymmetrical or non-uniform excitation array is also examined for time-reversal focusing in the presence of scattering objects.
An investigation of the effects of scattering object geometry on focusing resolution in time-reversal focusing is also presented. Scattering object field density is found to have a strong, but diminishing effect on focusing resolution as the scattering object field density increased. Loss of surface wave energy available for focusing due to mode-conversion is found to be correlated with the density of the scattering object field.
The impact of the weak non-linear nature of the soil on time-reversal focusing is examined through a study of time-reversal focusing behavior for a variety of amplitudes that generate different levels of non-linearity in the soil. This study of nonlinearity is coupled with a study of the impact of noise on time-reversal focusing. It appears that both non-linearity and noise have an impact on time-reversal focusing effectiveness. Further, the loss from these mechanisms seems to be interrelated. Noise seems to enhance non-linear loss in the soil.
|
32 |
Analysis of 2-axis pencil beam sonar microbathymetric measurements of mine burial at the Martha's Vineyard Coastal ObservatoryGotowka, Brendan Reed January 2005 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (leaves 96-98). / The changing state of warfare has driven the US Navy's area of operations closer to shore into littoral coastal waters. Mine Warfare has been proven as an extremely effective means of battlespace control in these waters. Mines can be inexpensively mass produced and rapidly deployed over large areas. The most common type of mine in use is the bottom placed mine, an object with simple geometry that sits on the seafloor. These mines often exhibit scour induced burial below the seafloor, making detection through traditional mine hunting methods difficult or impossible, while the mines themselves remain lethal. The Office of Naval Research (ONR) has developed a computer model that predicts the extent of mine burial to aid mine hunting and mine clearing operations. Investigations under ONR's Mine Burial Program are presently being conducted to calibrate and validate this model. This thesis uses data from the deployment of an acoustically instrumented model mine near the Martha's Vineyard Coastal Observatory in part of a larger, 16 total object investigation. A 2-axis pencil beam sonar was deployed concurrently with the mine to obtain microbathymetric measurements of the scour pit development and the progression of mine burial. Data correction techniques to correct for beam pattern induced bathymetry errors and a transformed coordinate system are detailed within. / (cont.) An analysis of scour pit dimensions includes scour depth, area, and volume as well as a look into percent burial by depth as a characteristic measurement important for operational mine hunting. The progression of mine burial is related to the wave climate, unsteady flow hydrodynamic forcing, and bed-load transport. The analysis examines the relative roles of these mechanisms in the scour-infill-bury process. / by Brendan Reed Gotowka. / S.M.
|
33 |
An XML-based mission command language for autonomous underwater vehicles (AUVs)Van Leuvan, Barbara C., Hawkins, Darrin L. 03 1900 (has links)
Approved for public release, distribution is unlimited / Autonomous Underwater Vehicles (AUVs) are now being introduced into the fleet to improve Mine Warfare capabilities. Several AUVs are under government-contracted development. Mission planning and data reporting vary between vehicles and systems. This variance does not pose an immediate problem, as only one AUV is currently in production. However, as more AUVs are put into production, commands will begin to get multiple AUVs. Without a single mission command language, multiple systems will require familiarity with multiple languages. Extensible Markup Language (XML) and related technologies may be used to facilitate interoperability between dissimilar AUVs and extract and integrate mission data into Navy C4I systems. XML makes archive maintenance easier, XML documents can be accessed via an http server, and, in root form, XML is transferable on the fly by stylesheet. This thesis presents an XML-based mission command for the command and control of AUVs. In addition, this thesis discusses XML technology and how XML is a viable means of achieving interoperability. Furthermore, this thesis provides an example mission file using existing software, and demonstrates the future of XML in AUV technology. Finally, this work ends with a compelling argument for the use of an XML-based mission command language to command all AUVs. / Ensign, United States Navy / Captain, United States Air Force
|
Page generated in 0.0735 seconds