• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theory, Design and Development of Artificial Magnetic Materials

Yousefi, Leila January 2009 (has links)
Artificial Magnetic Materials (AMMs) are a subgroup of metamaterials which are engineered to provide desirable magnetic properties not seen in natural materials. These artificial structures are designed to provide either negative or enhanced positive (higher than one) relative permeability. AMMs with negative permeability are used to develop Single Negative (SNG), or Double Negative (DNG) metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave frequencies where the natural magnetic materials fail to work efficiently. AMMs are realized by embedding metallic resonators in a host dielectric. These inclusions provide desirable magnetic properties near their resonance frequency. Artificial magnetic materials used as SNG, or DNG have many applications such as: sub-wavelength cavity resonators, sub-wavelength parallel-plate wave guides, sub-wavelength cylindrical and spherical core–shell systems, efficient electrically small dipole antennas, super lenses, THz active devices, sensitivity enhancement near-field probes using double and single negative media, and mutual coupling reduction between antennas. On the other hand, artificial magnetic materials used as magneto-dielectrics have other applications in developing enhanced bandwidth efficient miniaturized antennas, low profile enhanced gain antennas using artificial magnetic superstrates, wide band woodpile Electromagnetic Band Gap (EBG) structures, EBGs with enhanced in-phase reflection bandwidth used as artificial magnetic ground planes. In this thesis, several advances are added to the existing knowledge of developing artificial magnetic materials, in terms of analytical modeling, applications, realization, and experimental characterization. To realize AMMs with miniaturized unit cells, new inclusions based on fractal Hilbert curves are introduced, and analyzed. Analytical models, numerical full wave simulation, and experimental characterization are used to analyze, and study the new structures. A comprehensive comparison is made between the new inclusions, and perviously developed inclusions in terms of electromagnetic properties. The new inclusions have advantages of miniaturization, and less dispersion when compared to the existing structures in the literature. To realize multi-band AMMs, unit cells with multiple inclusions are proposed, designed, and analyzed. The new unit cells can be designed to give the desired magnetic properties either over distinguished multiple frequency bands, or over a single wide frequency band. Numerical full wave simulation is used to verify the proposed concept, and analytical models are provided for design, and optimization of the new unit cells. Unit cells with different configurations are optimized to get a wideband responce for the effective permeability. Space mapping technique is used to provide a link between analytically optimized structures, and full wave numerical simulation results. Two new methods are proposed for experimental characterization of artificial structures using microstrip, and strip line topologies. Using numerical results, the effect of anisotropy on the accuracy of the extracted parameters are investigated, and a fitting solution is proposed, and verified to address this challenge. New structures based on 2nd , and 3rd order fractal Hilbert curves are fabricated, and characterized using microstrip line, and strip line fixtures. Experimental results are presented, and compared with numerical results. The new experimental methods have advantages of lower cost, easier to fabricate and measure, and smaller sample size when compared to the existing methods in the literature. A new application is proposed for use of magnetic materials to develop wide band artificial magnetic conductors (AMC). Analytical models, and numerical analysis is used to validate the concept. A new ultra wideband AMC is designd, and analysed. The designed AMC is used as the ground plane to develop a low profile high gain ultra wide band antenna. The designed antenna is simulated, and its return loss, and gain is presented over a wide range of frequencies. A comprehensive study is presented on the performance of AMMs for the application of miniaturized antennas. A miniaturized antenna, using fractal Hilbert metamaterials as substrate, is fabricated, and measured. Measurement results are presented, and compared with numerical results. A parametric study is presented on the effect of the constitutive parameters of the artificial substrate on the performance of the miniaturized antenna. In this study, the effect of magnetic loss of AMM on the gain, and efficiency of the antenna, as well as the effect of dispersion of AMM on the bandwidth of the antenna is investigated.
2

Theory, Design and Development of Artificial Magnetic Materials

Yousefi, Leila January 2009 (has links)
Artificial Magnetic Materials (AMMs) are a subgroup of metamaterials which are engineered to provide desirable magnetic properties not seen in natural materials. These artificial structures are designed to provide either negative or enhanced positive (higher than one) relative permeability. AMMs with negative permeability are used to develop Single Negative (SNG), or Double Negative (DNG) metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave frequencies where the natural magnetic materials fail to work efficiently. AMMs are realized by embedding metallic resonators in a host dielectric. These inclusions provide desirable magnetic properties near their resonance frequency. Artificial magnetic materials used as SNG, or DNG have many applications such as: sub-wavelength cavity resonators, sub-wavelength parallel-plate wave guides, sub-wavelength cylindrical and spherical core–shell systems, efficient electrically small dipole antennas, super lenses, THz active devices, sensitivity enhancement near-field probes using double and single negative media, and mutual coupling reduction between antennas. On the other hand, artificial magnetic materials used as magneto-dielectrics have other applications in developing enhanced bandwidth efficient miniaturized antennas, low profile enhanced gain antennas using artificial magnetic superstrates, wide band woodpile Electromagnetic Band Gap (EBG) structures, EBGs with enhanced in-phase reflection bandwidth used as artificial magnetic ground planes. In this thesis, several advances are added to the existing knowledge of developing artificial magnetic materials, in terms of analytical modeling, applications, realization, and experimental characterization. To realize AMMs with miniaturized unit cells, new inclusions based on fractal Hilbert curves are introduced, and analyzed. Analytical models, numerical full wave simulation, and experimental characterization are used to analyze, and study the new structures. A comprehensive comparison is made between the new inclusions, and perviously developed inclusions in terms of electromagnetic properties. The new inclusions have advantages of miniaturization, and less dispersion when compared to the existing structures in the literature. To realize multi-band AMMs, unit cells with multiple inclusions are proposed, designed, and analyzed. The new unit cells can be designed to give the desired magnetic properties either over distinguished multiple frequency bands, or over a single wide frequency band. Numerical full wave simulation is used to verify the proposed concept, and analytical models are provided for design, and optimization of the new unit cells. Unit cells with different configurations are optimized to get a wideband responce for the effective permeability. Space mapping technique is used to provide a link between analytically optimized structures, and full wave numerical simulation results. Two new methods are proposed for experimental characterization of artificial structures using microstrip, and strip line topologies. Using numerical results, the effect of anisotropy on the accuracy of the extracted parameters are investigated, and a fitting solution is proposed, and verified to address this challenge. New structures based on 2nd , and 3rd order fractal Hilbert curves are fabricated, and characterized using microstrip line, and strip line fixtures. Experimental results are presented, and compared with numerical results. The new experimental methods have advantages of lower cost, easier to fabricate and measure, and smaller sample size when compared to the existing methods in the literature. A new application is proposed for use of magnetic materials to develop wide band artificial magnetic conductors (AMC). Analytical models, and numerical analysis is used to validate the concept. A new ultra wideband AMC is designd, and analysed. The designed AMC is used as the ground plane to develop a low profile high gain ultra wide band antenna. The designed antenna is simulated, and its return loss, and gain is presented over a wide range of frequencies. A comprehensive study is presented on the performance of AMMs for the application of miniaturized antennas. A miniaturized antenna, using fractal Hilbert metamaterials as substrate, is fabricated, and measured. Measurement results are presented, and compared with numerical results. A parametric study is presented on the effect of the constitutive parameters of the artificial substrate on the performance of the miniaturized antenna. In this study, the effect of magnetic loss of AMM on the gain, and efficiency of the antenna, as well as the effect of dispersion of AMM on the bandwidth of the antenna is investigated.
3

Conception de systèmes antennaires omnidirectionnels et directifs favorisant les ondes de surface comme vecteur de propagation dans la bande HF / Antenna design improving the surface waves propagation in the HF band

Bellec, Mathilde 09 October 2015 (has links)
Les ondes de surface se propagent le long de la surface terrestre par-delà l'horizon et ces propriétés de propagation sont des atouts pour diverses applications industrielles (civiles ou militaires) opérant dans la bande HF. C'est le cas notamment des radars transhorizon, des systèmes de communications, de la détection de tsunami, ou encore l'étude de la courantologie. Actuellement, les aériens utilisés dans ce contexte ne sont pas optimisés pour privilégier la propagation par ondes de surface. C'est dans ce contexte que TDF, la Direction Générale de l'Armement (DGA) et l'Institut d'Electronique et de Télécommunications de Rennes (IETR) se sont associés pour proposer cette thèse. L'objectif principal de la thèse est de concevoir des antennes en bande HF de dimensions réduites (<3 mètres) réduisant le rayonnement vers le ciel afin favoriser l'onde de surface. Une première approche a permis de concevoir deux antennes élémentaires, l'une omnidirectionnelle et l'autre directive, permettant de réduire le rayonnement vers le ciel pour les sites compris entre -45° et +45°. Les solutions proposées sont de tailles très réduites grâce à l'utilisation d'une antenne à polarisation verticale électriquement courte dans le plan vertical et de parasites horizontaux alimentés par couplage EM. Les études expérimentales réalisées à échelle réelle sont en bon accord avec les performances théoriques obtenus à l'aide de logiciels d'analyse électromagnétique commerciaux. Une seconde approche a permis de concevoir des réseaux d'antennes électriquement courtes dans le plan vertical selon une disposition linéaire des aériens. La réduction du rayonnement vers le ciel est réalisée grâce aux réseaux de type Endfire/Broadside. Enfin, une troisième étude a permis de concevoir deux systèmes antennaires agiles en diagrammes tout en conservant les propriétés de réduction de rayonnement vers le ciel. Le premier système à l'aide d'antennes électriquement courtes dans le plan vertical chargées par des réactances, et le second en appliquant une pondération en amplitude et en phase d'un réseau à deux dimensions. / The surface-waves propagate beyond the horizon. This phenomenon is an attractive feature for many applications operating in the HF band both in civil or military field. By example, we can quote the High Frequency Surface Waves Radar (HFSWR), communicating systems, or the study of the currentology. Currently, the antennas used in the field of surface-waves propagation are not fully optimized and radiate also in sky wave. In order to optimize the radiation pattern of the antennas used in these systems, the company TDF, the Direction Générale de l’Armement (DGA) and the Institute of Electronic and Telecommunications of Rennes (IETR) have proposed this projetct. The main objective of this work is to design electrically small antennas in the vertical plane (< 3 meters) in the HF band while reducing the radiation toward the sky. The first concept is based on vertically polarized antennas electrically small in the vertical plane coupled to horizontally radiators placed above the antenna. As a result, the radiation pattern in the horizontal plane is omnidirectional or directive with a radiation toward the sky reduced for the elevations range from -45° to +45°. Prototypes have been realized and validated by measurements. Then, in the second study we have developed antennas array in order to reduce the radiation toward the sky with another way that the horizontal radiators. This method allows reducing significantly the radiation toward the sky according to the number of elements in the array. Finally, in the third study we have studied electronically scanning antennas while maintaining the reduction of the radiation toward the sky. The first system is based on an array of radiator loaded by reactance, and the second is based on a planar array with an appropriate feeding.
4

Antennes miniatures et structures électromagnétiques à circuits non-Foster / Miniaturized Antennas and Electromagnteic Structures with non-Foster Circuits Applications

Niang, Anna 13 February 2017 (has links)
La recherche de nouveaux matériaux a permis de nouveaux développements au cours de ces dernières décennies. Ce sont entre autres les diélectriques artificiels ou encore les métamatériaux. Cependant, si ces matériaux restent passifs, malgré tous les développements possibles, les performances des antennes, ou autres structures électromagnétiques qui découlent d’eux seront toujours confrontés aux mêmes limitations fondamentales. En intégrant des circuits actifs dans ces matériaux, par exemple des résistances négatives, des capacités négatives et des inductances négatives, il est possible de dépasser ces limitations ainsi les propriétés synthétisables et les applications d’ingénierie pourront être significativement élargies. En effet, cela permettrait de créer des matériaux et des dispositifs dont les propriétés ne seront pas possibles autrement et surpasseraient celles des matériaux existant dans la nature. Cette thèse a été l’occasion dans un premier temps d’utiliser les circuits non-Foster qui sont des circuits à rétroaction actif, pour l’adaptation d’une antenne électriquement petite à basses fréquence. Ceci a permis de mettre en évidence ses avantages par rapport à une adaptation passive plus conventionnelle.Ensuite, des capacités négatives ainsi que des inductances négatives et positives ont été conçues. Leur fonctionnement totalement différent des composants passifs a été mis en exergue. Ce qui nous a conduit à les appliquer sur des structures périodiques. Cela a donné des résultats intéressants comme la propagation supraluminique sur une ligne de transmission des ondes. Et en les appliquant à la cellule unitaire d’une surface de métamatériaux qui est aussi une structure périodique, sa taille est réduite pour une plus grande compacité des antennes à cavités conçues pour les basses fréquences où la longueur d’onde est très grande. / The search of new materials has enabled new developments in recent decades. Among these are artificial or dielectric metamaterials. However, if these materials are passive, despite all the possible developments, the antennas performances or other structures resulting from them will still face the same fundamental limitations. By adding active circuits in these materials, such as negative resistors, negatives capacitors and negative inductors, it is possible to overcome these limitations and the synthesized properties and engineering applications can be significantly expanded. Indeed, this would create materials and devices with properties which can allow us to obtain behavior nonexistent in nature. This open the way to new applications. In this thesis, we explore the opportunity at first to use non-Foster circuits that are active feedback circuit, in the matching network of an electrically small antenna for low frequency operation. This helped to highlight its advantages over more conventional passive matching. Then, negative capacitors and negative and positive inductors were fabricated. Their totally different behaviors with passive components were also highlighted. This led us to apply them on periodic structures. Interesting results were obtained as superluminal wave propagation on a transmission line. And by applying to the unit cell of a metamaterial surface which is also a periodic structure, the size is reduced to a more compact cavity antennas designed for low frequency where the wavelength is very large.
5

Conception de systèmes multi-antennaires pour techniques de diversité et MIMO : application aux petits objets nomades communicants / Design of multi-antenna systems for diversity and MIMO techniques : applications to small communicating devices

Dioum, Ibra 12 December 2013 (has links)
La demande de transmissions à débits de plus en plus élevés s’accentue davantage avec l’essor de nouveaux services dans les réseaux de communication sans fils. Pour répondre à cette demande, une solution consiste à augmenter la capacité de transmission du canal radiofréquence entre la station de base et le terminal portatif. Ceci peut être réalisé en augmentant le nombre d’éléments rayonnant impliqués à l’émission et à la réception de cette liaison radiofréquence : on parle alors de technique MIMO (Multiple Input, Multiple Output). Cette thèse porte principalement sur la conception, l’optimisation et la caractérisation de systèmes multi-antennaires pour techniques de diversité et MIMO en bandes LTE (Long Term Evolution). Trois prototypes multi-bandes sont proposés dont deux systèmes planaires et un système d’antennes IFAs compactes. De nouvelles solutions multi-bandes et l’influence de la position de l’antenne sur le plan de masse sont étudiées pour réaliser de la diversité spatiale, de polarisation et de diagramme de rayonnement avec une faible corrélation entre les signaux reçus sur chaque antenne mais surtout une bonne efficacité totale. Une ligne de neutralisation est utilisée pour isoler les antennes et un fonctionnement multi-bande est réalisé. L’impédance d’entrée des antennes est étudiée avec la méthode de Youla & Carlin afin d’améliorer la bande passante de la structure compacte de type IFA. Les performances en diversité et en MIMO de ces systèmes sont évaluées dans différents environnements de propagation. Elles montrent que ces systèmes peuvent être utilisés efficacement pour des applications en diversité et MIMO. / The transmission demand for increasing data rate becomes more and more important with the development of new services in radio communication networks. To answer to this demand, one solution consists in increasing the transmission capacity of the radio channel between the base station and the handset terminal. This can be realized by increasing the number of radiating elements involved in the transmission and the reception of this radio link: we talk about MIMO (Multiple Input Multiple Output) technique. The work realized in this thesis concerns mainly design, optimization and characterization of multi-antenna systems for MIMO and diversity techniques in LTE (Long Term Evolution) bands. Three multi bands prototypes are proposed whose two planar systems and one compact IFAs antennas system. News multiband solution and antenna position influence on the PCB were studied to realize spatial, polarization and pattern diversity with low correlation between received signals on each antenna and a good efficiency. The neutralization line was used for antennas isolation and its application in multiband was realized. The antenna load impedance has been studied with Youla & Carlin method in order to improve the frequency bandwidth of the compact IFA structure. Diversity and MIMO performances of these systems were evaluated in different propagation environments. They show that these systems can be effectively used for diversity and MIMO application.

Page generated in 0.1132 seconds