• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Number of Colors in Quandle Knot Colorings

Kerr, Jeremy William 22 March 2016 (has links)
A major question in Knot Theory concerns the process of trying to determine when two knots are different. A knot invariant is a quantity (number, polynomial, group, etc.) that does not change by continuous deformation of the knot. One of the simplest invariant of knots is colorability. In this thesis, we study Fox colorings of knots and knots that are colored by linear Alexander quandles. In recent years, there has been an interest in reducing Fox colorings to a minimum number of colors. We prove that any Fox coloring of a 13-colorable knot has a diagram that uses exactly five colors. The ideas behind the reduction of colors in a Fox coloring is extended to knots colored by linear Alexander quandles. Thus, we prove that any knot colored by either the linear Alexander quandle Z5[t]/(t − 2) or Z5[t]/(t − 3) has a diagram using only four colors.

Page generated in 0.0797 seconds