• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Módulos de Ulrich

Maia, Mariana de Brito 29 April 2013 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-21T14:11:17Z No. of bitstreams: 1 arquivo total.pdf: 931330 bytes, checksum: 351b504f68153fb01d23f3fd1d96d2a0 (MD5) / Made available in DSpace on 2016-03-21T14:11:17Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 931330 bytes, checksum: 351b504f68153fb01d23f3fd1d96d2a0 (MD5) Previous issue date: 2013-04-29 / In this work, after the introduction of some concepts of Commutative Algebra, for instance dimension, minimal number of generators, and multiplicity, we prove the existence of a very special class of modules over Cohen-Macaulay rings, the so-called Ulrich modules. It is known that, if M is a maximal Cohen-Macaulay module over such ring, then (M) e(M). Our goal in this study is to prove the main cases where the equality (M) e(M) holds. / Neste trabalho, após introduzirmos alguns conceitos de Álgebra Comutativa, como dimensão, número mínimo de geradores, e multiplicidade, provamos a existência de uma classe de módulos bastante especial sobre anéis Cohen-Macaulay, os chamados módulos de Ulrich. É sabido que, se M é um A-módulo Cohen-Macaulay maximal sobre um tal anel, então (M) e(M). O objetivo do nosso estudo é demonstrar os principais casos em que vale (M) = e(M).

Page generated in 0.104 seconds