Spelling suggestions: "subject:"minimum cotransport 2condition (MTC)"" "subject:"minimum cotransport conditition (MTC)""
1 |
Monitoring sand particle concentration in multiphase flow using acoustic emission technologyEl-Alej, Mohamed Essid January 2014 (has links)
Multiphase flow is the simultaneous flow of two or several phases through a system such as a pipe. This common phenomenon can be found in the petroleum and chemical engineering industrial fields. Transport of sand particles in multiphase production has attracted considerable attention given sand production is a common problem especially to the oil and gas industry. The sand production causes loss of pipe wall thickness which can lead to expensive failures and loss of production time. Build-up of sand in the system can result in blockage and further hamper production. Monitoring of multiphase flow is a process that has been established over several decades. This thesis reports an assessment of the application of Acoustic Emission (AE) technology as an alternative online technique to monitoring of sand particles under multiphase flow conditions in a horizontal pipe. The research was conducted on a purpose built test rig with the purpose of establishing a relation between AE activity and sand concentration under different multiphase flow conditions. The investigation consisted of five experimental tests. The initial experiment was performed to provide a basis for the application of AE technology to detect sand particle impact prior to performing tests in multiphase flow conditions. Further investigations are reported on two phase air-sand, water-sand and air- water-sand three-phase flows in a horizontal pipe for different superficial gas velocities (VSG), superficial liquid velocities (VSL) and sand concentrations (SC). The experimental findings clearly showed a correlation exists between AE energy levels and multiphase flow parameters, such as superficial liquid velocity (VSL), superficial gas velocity (VSG), sand concentration and sand minimum transport condition (MTC).
|
2 |
Monitoring sand particle concentration in multiphase flow using acoustic emission technologyEl-Alej, Mohamed Essid 01 1900 (has links)
Multiphase flow is the simultaneous flow of two or several phases through a
system such as a pipe. This common phenomenon can be found in the
petroleum and chemical engineering industrial fields. Transport of sand particles
in multiphase production has attracted considerable attention given sand
production is a common problem especially to the oil and gas industry. The
sand production causes loss of pipe wall thickness which can lead to expensive
failures and loss of production time. Build-up of sand in the system can result in
blockage and further hamper production. Monitoring of multiphase flow is a
process that has been established over several decades.
This thesis reports an assessment of the application of Acoustic Emission (AE)
technology as an alternative online technique to monitoring of sand particles
under multiphase flow conditions in a horizontal pipe. The research was
conducted on a purpose built test rig with the purpose of establishing a relation
between AE activity and sand concentration under different multiphase flow
conditions.
The investigation consisted of five experimental tests. The initial experiment
was performed to provide a basis for the application of AE technology to detect
sand particle impact prior to performing tests in multiphase flow conditions.
Further investigations are reported on two phase air-sand, water-sand and air-
water-sand three-phase flows in a horizontal pipe for different superficial gas
velocities (VSG), superficial liquid velocities (VSL) and sand concentrations (SC).
The experimental findings clearly showed a correlation exists between AE
energy levels and multiphase flow parameters, such as superficial liquid velocity
(VSL), superficial gas velocity (VSG), sand concentration and sand minimum
transport condition (MTC).
|
3 |
Experimental and numerical investigation of high viscosity oil-based multiphase flowsAlagbe, Solomon Oluyemi 05 1900 (has links)
Multiphase flows are of great interest to a large variety of industries because flows of two
or more immiscible liquids are encountered in a diverse range of processes and
equipment. However, the advent of high viscosity oil requires more investigations to
enhance good design of transportation system and forestall its inherent production
difficulties.
Experimental and numerical studies were conducted on water-sand, oil-water and oilwater-
sand respectively in 1-in ID 5m long horizontal pipe. The densities of CYL680 and
CYL1000 oils employed are 917 and 916.2kg/m3 while their viscosities are 1.830 and
3.149Pa.s @ 25oC respectively. The solid-phase concentration ranged from 2.15e-04 to
10%v/v with mean diameter of 150micron and material density of 2650kg/m3.
Experimentally, the observed flow patterns are Water Assist Annular (WA-ANN),
Dispersed Oil in Water (DOW/OF), Oil Plug in Water (OPW/OF) with oil film on the
wall and Water Plug in Oil (WPO). These configurations were obtained through
visualisation, trend and the probability density function (PDF) of pressure signals along
with the statistical moments. Injection of water to assist high viscosity oil transport
reduced the pressure gradient by an order of magnitude. No significant differences were
found between the gradients of oil-water and oil-water-sand, however, increase in sand
concentration led to increase in the pressure losses in oil-water-sand flow.
Numerically, Water Assist Annular (WA-ANN), Dispersed Oil in Water (DOW/OF), Oil
Plug in Water (OPW/OF) with oil film on the wall, and Water Plug in Oil (WPO) flow
pattern were successfully obtained by imposing a concentric inlet condition at the inlet of
the horizontal pipe coupled with a newly developed turbulent kinetic energy budget
equation coded as user defined function which was hooked up to the turbulence models.
These modifications aided satisfactory predictions.
|
4 |
Experimental and numerical investigation of high viscosity oil-based multiphase flowsAlagbe, Solomon Oluyemi January 2013 (has links)
Multiphase flows are of great interest to a large variety of industries because flows of two or more immiscible liquids are encountered in a diverse range of processes and equipment. However, the advent of high viscosity oil requires more investigations to enhance good design of transportation system and forestall its inherent production difficulties. Experimental and numerical studies were conducted on water-sand, oil-water and oilwater- sand respectively in 1-in ID 5m long horizontal pipe. The densities of CYL680 and CYL1000 oils employed are 917 and 916.2kg/m3 while their viscosities are 1.830 and 3.149Pa.s @ 25oC respectively. The solid-phase concentration ranged from 2.15e-04 to 10%v/v with mean diameter of 150micron and material density of 2650kg/m3. Experimentally, the observed flow patterns are Water Assist Annular (WA-ANN), Dispersed Oil in Water (DOW/OF), Oil Plug in Water (OPW/OF) with oil film on the wall and Water Plug in Oil (WPO). These configurations were obtained through visualisation, trend and the probability density function (PDF) of pressure signals along with the statistical moments. Injection of water to assist high viscosity oil transport reduced the pressure gradient by an order of magnitude. No significant differences were found between the gradients of oil-water and oil-water-sand, however, increase in sand concentration led to increase in the pressure losses in oil-water-sand flow. Numerically, Water Assist Annular (WA-ANN), Dispersed Oil in Water (DOW/OF), Oil Plug in Water (OPW/OF) with oil film on the wall, and Water Plug in Oil (WPO) flow pattern were successfully obtained by imposing a concentric inlet condition at the inlet of the horizontal pipe coupled with a newly developed turbulent kinetic energy budget equation coded as user defined function which was hooked up to the turbulence models. These modifications aided satisfactory predictions.
|
Page generated in 0.1126 seconds